

 Navigation

 	
 next

 	Release Engine Guide 0.0.1 documentation

Release Engine

Release Engine is a collection of open-source tools that provides the functionality necessary to continuously deploy packaged code from a development team’s continuous integration server of choice to all environments and automate certain business processes associated with the release of code.

The home of the Release Engines is on
GitHub in the RHInception Organization [https://github.com/RHInception?query=re-].

Put very simply: the Release Engine is an orchestration tool
(re-core) that runs commands on purpose-built workers
(re-worker). The commands to run (and where to run
them) are defined in playbooks in YAML or JSON
format.

Interaction with the engine happens via a REST interface
(re-rest). Additional workers exist for the purposes
of aggregating logs, as well as sending notifications over any
preferred method (such as email, or IRC). A bare-minimal Release
Engine installation would require re-rest, re-core, and any
given re-worker.

To learn more about the RH Inception group, follow us on the Red Hat
Developer Blog [http://developerblog.redhat.com/] under the tag
inception [http://developerblog.redhat.com/tag/inception/].

	1. Introduction
	1.1. Overview

	1.2. Components

	2. Setting up
	2.1. Infrastructure Requirements

	2.2. Core Component Requirements

	3. Components and Libraries
	3.1. RE-CORE

	3.2. RE-REST

	3.3. Playbook Workers

	3.4. Auxiliary Workers

	3.5. Libraries/Helpers

	4. Tutorial: Writing Workers
	4.1. Basics

	4.2. Advanced Topics

	5. Development
	5.1. Build States

	5.2. Contributing

	5.3. Testing

	6. Message Formats
	6.1. re-rest ↔ re-core

	6.2. re-core ↔ re-workers

	6.3. Notification Message Format

	6.4. Output Message Format

	7. Playbooks
	7.1. Example Playbook

	7.2. Playbook Components

	7.3. Execution Sequences

	7.4. Putting it all together

	8. Worker Steps
	8.1. Juicer

	8.2. BigIP

	8.3. FUNC

	8.4. Sleep

	8.5. ServiceNow

	9. Appendices
	9.1. JSON Scripts

	9.2. YAML Scripts

	9.3. Definitions

	10. AGPLv3 License

 Copyright 2014, See AUTHORS.
 Last updated on 2014-09-16 - 15:44:51 CDT.
 Created using Sphinx 1.2.2.

 Navigation

 	
 next

 	
 previous |

 	Release Engine Guide 0.0.1 documentation

1. Introduction

This section provides a very high-level overview of the Release Engine
and it’s component parts. Let’s begin with a high-level overview of
the complete system.

1.1. Overview

This section is a narrative, or story, introducing us to the
individiual roles each component plays in the Release Engine. At the
end of this narrative we’ll have learned:

	Overall workflow

	About the key components

	How components communicate

1.1.1. Scenario

We work in a software shop and we have been told to decrease our time
to delivery. We took some measurements and realized that even with
Jenkins [http://jenkins-ci.org/] and some home-brewed systems for
deployment, we’re still spending ≥ 20% of our sprint time on just
deploying to test environments. Let’s focus on getting back that 20%.

How do we approach this? What functionality must be present in any
kind of system which can automate deployments? Also consider that
we’re just one stop in a much larger shop. Given that constraint, it
follows that whatever we build should be accessible to outsiders,
extensible so other teams can build on it to fit their requirements,
as well as have a clear language for describing steps in a release.

	Authentication and authorization

	Storage for deployment playbooks

	Loosey coupled components, so individual installations can scale to
meet their owners requirements

	Something to manage all of the actual steps happening

	And, some sort of configurable notification system, so we can get
updates in real time.

When used together, the Release Engine provides all these things.

1.2. Components

The Release Engine has three required components. Each of which is
documented thoroughly in its own separate section. The following are
brief descriptions of each component.

	RE-CORE
	A finite state machine which oversees the execution of all steps
required to complete a release

	RE-REST
	A REST endpoint [http://en.wikipedia.org/wiki/Representational_state_transfer]
which handles authentication/authorization

	The primary point of interaction for clients

	One or more workers
	Workers are the components which are actually executed as release steps

	There are several pre-built workers, you can view them on github [https://github.com/RHInception?query=re-worker-]

In addition to the required components:

	RE-CLIENT
	Command line took for easily interacting with the Release Engine

	Create, read, update, delete, and run playbooks

1.2.1. Component Diagram

[image: _images/ComponentDiagram.png]

1.2.2. Interactions & Workflow

This section describes how the Release Engine components interact with
each other and the supporting infrastructure. We’ll review these interaction by examining a
typical workflow.

 Copyright 2014, See AUTHORS.
 Last updated on 2014-09-16 - 15:44:51 CDT.
 Created using Sphinx 1.2.2.

 Navigation

 	
 next

 	
 previous |

 	Release Engine Guide 0.0.1 documentation

2. Setting Up

Table of Contents

	Setting Up
	Infrastructure Requirements
	The Bus

	The Datastore

	Core Component Requirements
	RE-REST

	RE-CORE

2.1. Infrastructure Requirements

2.1.1. The Bus

Release Engine requires an AMQP service allowing messages to pass between components. The current, verified to work, AMQP service used with Release Engine is RabbitMQ [http://www.rabbitmq.com/], an Erlang-based [http://www.erlang.org/] open source messaging service. For more information on setting up a RabbitMQ server please read the project’s server documentation [http://www.rabbitmq.com/admin-guide.html].

For security best practices, each component that transmits on the bus should have it’s own username and password combination. By enforcing component username/passwords access can be restricted to just what a component needs. This also allows quick deactivation of a component in the event something goes terribly wrong or a service is compromised.

2.1.1.1. Setup Steps

Note

Provision or utilize an existing server to install RabbitMQ or similar AMQP compliant service. For the rest of this article we will assume that you are running the service on RabbitMQ.

	Install RabbitMQ Server [http://www.rabbitmq.com/install-rpm.html]

	Open ports 5672 (AMQP) and 15672 (management)

	Enable RabbitMQ management via the Management Plugin [http://www.rabbitmq.com/management.html]

	Start RabbitMQ

	Create an exchange called “re” using topics

	Create a user for RE-REST (the rest interface into Release Engine)

	Create a user for RE-CORE (the state machine)

	Create a queue for RE-CORE

	Bind the RE-CORE queue to the re exchange with job.create

	Create a user for each component your instance will support

	Create a queue for each component your instance will support

	Bind the queue for each additional component (not including RE-REST and RE-CORE which are mandatory and separate from any additional components) to the re exchange with connectors that describe the step or plugin that your instance will support.

Todo

List binding instructions for queues

2.1.1.2. Test Setup

Todo

How to verify it’s ready.

2.1.2. The Datastore

Release engine utilizes MongoDB [http://www.mongodb.org/] for storing playbooks and other persistent data. Authentication must be turned on and it’s highly recommended to create a username/password for every component that requires access to the data store.

2.1.2.1. Setup Steps

Note

Provision or utilize an existing server to install MongoDB or similar service like Amazon DynamoDB for the NoSQL service. For the rest of this article we will assume that you are running a local MongoDB service.

	Provision or choose a server to utilize for the datastore

	Install MongoDB on the server

	Open port 27017

	Update MongoDB for authentication (see the documentation [http://docs.mongodb.org/manual/tutorial/enable-authentication/])

	Start MongoDB

	Create a database called “re”

	Create a user for RE-CORE on database “re”

	Create a user for RE-REST on database “re”

	Import the initial data for the database via MongoDB Command Line Tools or one of the many MongoDB UI Tools [http://mongodb-tools.com/].

Todo

Provide a link to the initial database import

2.1.2.2. Test Setup

Todo

How to verify it’s ready.

2.2. Core Component Requirements

There are two components you must have no matter what workers you choose to support. These components are: RE-REST [https://github.com/RHInception/re-rest/] and RE-CORE [https://github.com/RHInception/re-core].

2.2.1. RE-REST

RE-REST is the REST endpoint for interacting with the Release Engine. This is the only interaction point by design. RE-REST is a Flask [http://flask.pocoo.org/] based application and requires a few libraries before it will work properly.

2.2.1.1. Setup Steps

	Provision or choose a server to utilize for RE-REST

	Install Python v2

	Install the python v2 libraries listed on the re-rest GitHub page [https://github.com/RHInception/re-rest/blob/master/requirements.txt].

	Follow the RE-REST configuration instruction at RE-REST → Configuration.

	Choose and implement a RE-REST deployment strategy via RE-REST Deployment.

2.2.1.2. Test Setup

Todo

How to verify it’s ready.

2.2.2. RE-CORE

The core is essentially a finite state machine (FSM) hooked into a message bus and a database.

The core oversees the execution of all release steps for any given project. The core is separate from the actual execution of each release step. Execution is delegated to the worker components.

2.2.2.1. Setup Steps

	Provision or choose a server to utilize for RE-CORE

	Install Python v2

	Install the python v2 libraries listed on the re-core GitHub page [https://github.com/RHInception/re-core/blob/master/requirements.txt].

	Follow the RE-CORE configuration instructions at RE-CORE Configuration.

	Choose and implement a RE-CORE deployment strategy via RE-CORE Deployment.

2.2.2.2. Test Setup

Todo

How to verify it’s ready.

 Copyright 2014, See AUTHORS.
 Last updated on 2014-09-16 - 15:44:51 CDT.
 Created using Sphinx 1.2.2.

 Navigation

 	
 next

 	
 previous |

 	Release Engine Guide 0.0.1 documentation

3. Components

	3.1. RE-CORE

	3.2. RE-REST

Important

Release Engine workers require the RE-WORKER module

3.3. Playbook Workers

These workers are usable in playbooks.

	3.3.1. RE-WORKER-BIGIP

	3.3.2. RE-WORKER-FUNC

	3.3.3. RE-WORKER-JUICER

	3.3.4. RE-WORKER-SERVICENOW

	3.3.5. RE-WORKER-SLEEP

3.4. Auxiliary Workers

These workers are support workers and handle various other tasks. They
are not usable in playbooks.

	3.4.1. RE-WORKER-EMAILNOTIFY

	3.4.2. RE-WORKER-IRCNOTIFY

	3.4.3. RE-WORKER-OUTPUT

3.5. Libraries/Helpers

	3.5.1. RE-CLIENT

	3.5.2. RE-WORKER

 Copyright 2014, See AUTHORS.
 Last updated on 2014-09-16 - 15:44:51 CDT.
 Created using Sphinx 1.2.2.

 Navigation

 	
 next

 	
 previous |

 	Release Engine Guide 0.0.1 documentation

 	3. Components

3.1. RE-CORE

The core is essentially a finite state machine (FSM) hooked into a message bus and a database.

The core oversees the execution of all release steps for any given project. The core is separate from the actual execution of each release step. Execution is delegated to the worker component.

3.1.1. Running From Source

$. ./hacking/setup-env
$ re-core -c ./examples/settings-example.json

3.1.2. RE-CORE Configuration

Configuration of the server is done in JSON. You can find an example configuration file in the examples/ [https://github.com/RHInception/re-core/tree/master/examples] directory.

You must point to a specific configuration file using the -c command-line option to start the FSM:

$ re-core -c settings.json

Descriptions of all settings directives:

	Name
	Type
	Parent
	Value

	LOGFILE
	str
	None
	File name for the application level log

	RELEASE_LOG_DIR
	str
	None
	Directory for per-release logging (default: None)

	MQ
	dict
	None
	Where all of the MQ connection settings are

	SERVER
	str
	MQ
	Hostname or IP of the server

	NAME
	str
	MQ
	Username to connect with

	PASSWORD
	str
	MQ
	Password to authenticate with

	QUEUE
	str
	MQ
	Queue on the server to bind

	DB
	dict
	None
	Where all the DB connection settings are

	SERVERS
	list
	DB
	List of all of the MongoDB hostname/IPs

	DATABASE
	str
	DB
	Name of the MongoDB database

	NAME
	str
	DB
	Username to connect with

	PASSWORD
	str
	DB
	Password to authenticate with

	PHASE_NOTIFICATION
	dict
	None
	Notifications that will always happen in a phase

	TABOOT_URL
	str
	PHASE_NOTIFICATION
	URL with %s to taboot tailer EX: http://example.com/taboot/%s/

	TOPIC
	str
	PHASE_NOTIFICATION
	The topic (routing key) to send notification on. EX: notify.irc.

	TARGET
	list
	PHASE_NOTIFICATION
	The targets to send the notification to. EX: ["#mychannel", "auser"]

	PRE_DEPLOY_CHECK
	list
	None
	The yes/no checks to make prior to deployment (see below for more information)

For an example see example-config.json [https://github.com/RHInception/re-core/blob/master/examples/settings-example.json].

3.1.3. RE-CORE Deployment

Note

The release engine is only deployable via source code at this time.

Note

Release engine components are no fully demonized at this
time. Therefore, deployment requires running each component in
something like screen.

	Change into the directory you cloned re-core into

	Run screen

	Update your re-core config file with appropriate values

	Update your paths by running: . ./hacking/setup-env

	Run re-core -c path/to/settings.json

You should see output similar to the following:

[~/release-engine/re-core] $ re-core -c ./real-settings.json
2014-05-19 13:56:00,179 - __init__:start_logging:43 - DEBUG - initialized stdout logger
2014-05-19 13:56:00,180 - __init__:parse_config:53 - DEBUG - Parsed configuration file

Additional output will be directed to the log file you configured in
the settings.json file. The default log file is called
recore.log and will be in your present working directory.

3.1.4. Per-release Logging

By default, the FSM will log to the console and a single logfile
(LOGFILE).

Optionally, one may log the FSM activity for each release to a
separate file. This is done by configuring the re-core
RELEASE_LOG_DIR setting with the path to the log-holding
directory.

If per-release logging is enabled, the log files will be created as:
RELEASE_LOG_DIR/FSM-STATE_ID.log

Warning

Be sure the FSM has permission to write the specified
directory. You won’t find out it can’t until the first release is
attempted.

	1
2
3
4
5
6
7

	{
 "LOGFILE": "recore.log",
 "RELEASE_LOG_DIR": "/var/log/recore",
 "MQ": {
 "SERVER": "amqp.example.com"
 }
}

3.1.5. Pre-Deployment Checks

An re-core instance may be configured to run one or more scripts prior
to the deployment of any playbook. Each pre-deployment check defines
the command to run and the expected result from the command. If
expected equals observed, then the check is considered to have
passed. If expected is not equal to observed, then the check has
failed and the entire deployment is marked as failed.

Important

These checks apply to all deployments

Configuration of pre-deployment checks takes place in the re-core
setting.json file.

Example settings

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18

	{
 "LOGFILE": "recore.log",
 "RELEASE_LOG_DIR": null,

 "PRE_DEPLOY_CHECK": [{
 "Require Change Record": {
 "COMMAND": "servicenow",
 "SUBCOMMAND": "getchangerecord",
 "PARAMETERS": {},
 "EXPECTATION": {
 "status": "completed",
 "data": {
 "exists": true
 }
 }
 }
 }]
}

Here we see a new directive, PRE_DEPLOY_CHECK (line 5), this
key holds a list whose members are nested dictionaries (lines 6 →
16). This example has one nested-dictionary. It has one key, that
is the name of the check, Require Change Record. You can give any
name you want to keys as long as it is JSON parsable.

Now let’s look at this nested-dictionary closer:

{
 "COMMAND": "servicenow",
 "SUBCOMMAND": "getchangerecord",
 "PARAMETERS": {},
 "EXPECTATION": {
 "status": "completed",
 "data": {
 "exists": true
 }
 }
}

	COMMAND - Name of the worker to run the check with,
re-worker-servicenow in this example

	SUBCOMMAND - The specific sub-command to run on that worker

	PARAMETERS - Dictionary with variable keys depending on what your worker requires

	EXPECTATION - The result we expected to get back from the check.

Pass or fail is determined by comparing the actual response
against EXPECTATION. If they are the same then the check
passes. If they differ then the check fails and the deployment is
marked as failed and aborted.

 Copyright 2014, See AUTHORS.
 Last updated on 2014-09-16 - 15:44:51 CDT.
 Created using Sphinx 1.2.2.

 Navigation

 	
 next

 	
 previous |

 	Release Engine Guide 0.0.1 documentation

 	3. Components

3.2. RE-REST

Simple REST Api [http://en.wikipedia.org/wiki/Representational_state_transfer] for
the Release Engine. By design RE-REST is the only way to interact with
the Release Engine.

Table of Contents

	RE-REST
	RE-REST Configuration

	Authentication
	rerest.decorators:remote_user_required

	Authorization
	rerest.authroziation.no_authorization

	rerest.authroziation.ldap_search

	RE-REST Deployment
	Apache with mod_wsgi

	Gunicorn

	Running From Source

	URLs
	/api/v0/$GROUP/playbook/$PLAYBOOKID/deployment/

	/api/v0/playbooks/

	/api/v0/$GROUP/playbook/

	/api/v0/$GROUP/playbook/$ID/

	Platform Gotchas
	RHEL 6

	What’s Happening

	Usage Example
	htaccess / HTTP Basic Auth

	kerberos

	Dynamic Variables

3.2.1. RE-REST Configuration

Configuration of the server is done in JSON and is by default kept in
the current directories settings.json [https://github.com/RHInception/re-rest/blob/master/example-settings.json]
file.

You can override the location by setting REREST_CONFIG environment variable.

	Name
	Type
	Parent
	Value

	LOGFILE
	str
	None
	File name for the application level log

	LOGLEVEL
	str
	None
	DEBUG, INFO (default), WARN, FATAL

	MQ
	dict
	None
	Where all of the MQ connection settings are

	SERVER
	str
	MQ
	Hostname or IP of the server

	PORT
	int
	MQ
	Port to connect on

	USER
	str
	MQ
	Username to connect with

	PASSWORD
	str
	MQ
	Password to authenticate with

	VHOST
	str
	MQ
	vhost on the server to utilize

	MONGODB_SETTINGS
	dict
	None
	Where all of the MongoDB settings live

	DB
	str
	MONGODB_Settings
	Name of the database to use

	USERNAME
	str
	MONGODB_Settings
	Username to auth with

	Password
	str
	MONGODB_Settings
	Password to auth with

	HOST
	str
	MONGODB_Settings
	Host to connect to

	PORT
	int
	MONGODB_Settings
	Port to connect to on the host

	PLAYBOOK_UI
	bool
	None
	Turn’s on/off the experimental playbook ui. It’s off by default.

	AUTHORIZATION_CALLABLE
	str
	None
	module.location:callable. Eg: rerest.authorization:no_authorization

	AUTHORIZATION_CONFIG
	dict
	None
	Authorization callable specific configuration items

Further configuration items can be found in the Flask Documentation [http://flask.pocoo.org/docs/config/#builtin-configuration-values]
or look at specific AUTHORIZATION_CALLABLE documentation.

For an example see example-settings.json [http://github.com/RHInception/re-rest/blob/master/example-settings.json]

3.2.2. Authentication

re-rest uses a simple decorator which enforces a REMOTE_USER be set.

3.2.2.1. rerest.decorators:remote_user_required

This decorator assumes that re-rest is running behind another web
server which is taking care of authentication. If REMOTE_USER is
passed to re-rest from the web server re-rest assumes authentication
has succeeded. If it is not passed through re-rest treats the users as
unauthenticated.

Warning

When using this decorator it is very important that re-rest not be reachable by any means other than through the front end webserver!!

3.2.3. Authorization

re-rest uses a decorator which keys off the AUTHORIZATION_CALLABLE configuration parameters.

3.2.3.1. rerest.authroziation.no_authorization

Warning

This should not be used in a production environment**

To use this callable set AUTHORIZATION_CALLABLE to rerest.authorization:no_authorization.

3.2.3.2. rerest.authroziation.ldap_search

To use this callable set AUTHORIZATION_CALLABLE to rerest.authorization:ldap_search and set the following items
in your configuration file.

	Name
	Type
	Parent
	Value

	LDAP_URI
	str
	AUTHORIZATION_CONFIG
	A full ldap URI such as ldaps://127.0.0.1

	LDAP_USER
	str
	AUTHORIZATION_CONFIG
	User to bind with

	LDAP_PASSWORD
	str
	AUTHORIZATION_CONFIG
	Password to bind with

	LDAP_SEARCH_BASE
	str
	AUTHORIZATION_CONFIG
	Search base for all queries. Ex: dc=example,dc=com

	LDAP_MEMBER_ID
	str
	AUTHORIZATION_CONFIG
	The name of the field that houses the username

	LDAP_FIELD_MATCH
	str
	AUTHORIZATION_CONFIG
	What field to use against the lookup table

	LDAP_LOOKUP_TABLE
	dict
	AUTHORIZATION_CONFIG
	key: list table of LDAP_FIELD_MATCH items to allowed groups. A * means all groups.

Here’s a command-line example of how the LDAP_LOOKUP_TABLE
property is used. In this example we will learn how authorization of
the user testuser is determined.

Our organization has an ldap server at ldap.example.com, and
groups are organized under the ou=Groups,dc=example,dc=com
sub-tree. In this example re-rest will not attempt to bind
(authenticate) with the LDAP server. Here is an example of this
configuration:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14

	 {
 "AUTHORIZATION_CONFIG": {
 "LDAP_URI": "ldap://ldap.example.com",
 "LDAP_USER": "",
 "LDAP_PASSWORD": "",
 "LDAP_SEARCH_BASE": "ou=Groups,dc=example,dc=com",
 "LDAP_MEMBER_ID": "memberUid",
 "LDAP_FIELD_MATCH": "cn",
 "LDAP_LOOKUP_TABLE": {
 "admins": ["prod"],
 "superadmins": ["*"]
 }
 }
}

The admins group could look like this:

	1
2
3
4
5
6
7

	dn: cn=admins,ou=Groups,dc=example,dc=com
cn: admins
objectClass: top
objectClass: posixGroup
gidNumber: 1337
memberUid: testuser
memberUid: testboss

On line 6 we can see that this user is a member of the LDAP group
admins. We also see here that group membership is denoted by use
of the memberUid attribute. Note how this matches the the
LDAP_MEMBER_ID setting we previously mentioned.

Let’s pretend testuser is attempting to run a playbook with the
group field set to prod (short for
production). To determine authorization, re-rest will perform
an LDAP search [https://www.ietf.org/rfc/rfc2254.txt] to query for
records which match two conditions:

	A record for a group exists in the ou=Groups,dc=example,dc=com
sub-tree with a cn of admins

	The discovered record has a memberUid attribute which matches
the user’s name: testuser

In LDAP search filter syntax, this query would look like the following:

(&(cn=admins)(memberUid=testuser))

With the ldapsearch command-line tool, we can test this
authorization with the following command:

$ ldapsearch -xLLL -b ou=Groups,dc=example,dc=com -h ldap.example.com '(&(cn=admins)(memberUid=testuser))'

If no results are returned, then the user is not authorized. If a
result is resturned, then the user is authorized.

3.2.4. RE-REST Deployment

3.2.4.1. Apache with mod_wsgi

mod_wsgi can be used with Apache to mount rerest. Example mod_wsgi files are located in contrib/mod_wsgi.

	rerest.conf: The mod_wsgi configuration file. This should be modified and placed in /etc/httpd/conf.d/.

	rerest.wsgi: The WSGI file that mod_wsgi will use. This should be modified and placed in the location noted in rerest.conf

3.2.4.2. Gunicorn

Gunicorn (http://gunicorn.org/) is a popular open source Python WSGI server. It’s still recommend to use Apache (or another web server) to handle auth before gunicorn since gunicorn itself is not set up for it.

$ gunicorn --user=YOUR_WORKER_USER --group=YOUR_WORKER_GROUP -D -b 127.0.0.1:5000 --access-logfile=/your/access.log --error-logfile=/your/error.log -e REREST_CONFIG=/full/path/to/settings.json rerest.app:app

3.2.5. Running From Source

To run directly from source in order to test out the server run:

$ python rundevserver.py

The dev server will allow any HTTP Basic Auth user/password combination.

3.2.6. URLs

3.2.6.1. /api/v0/$GROUP/playbook/$PLAYBOOKID/deployment/

	PUT: Creates a new deployment.

	Response Type: json

	Response Example: {"status": "created", "id": 1}

	Input Format: None

	Inputs: optional json

3.2.6.2. /api/v0/playbooks/

	GET: Gets a list of all playbooks.

	Response Type: json

	Response Example: {"status": "ok", "items": [...]}

	Input Format: None

	Inputs: None

3.2.6.3. /api/v0/$GROUP/playbook/

	GET: Gets a list of all playbooks for a group.

	Response Type: json

	Response Example: {"status": "ok", "items": [...]}

	Input Format: None

	Inputs: None

	PUT: Creates a new playbook.

	Response Type: json

	Response Example: {"status": "created", "id": "53614ccf1370129d6f29c7dd"}

	Input Format: json/yaml

	Inputs: Optional format parameter which controls submit type. Can be json or yaml. Default is json.

3.2.6.4. /api/v0/$GROUP/playbook/$ID/

	GET: Gets a playbooks for a group.

	Response Type: json/yaml

	Response Example: {"status": "ok", "item": ...}

	Input Format: None

	Inputs: Optional format parameter which controls response type. Can be json or yaml. Default is json.

	POST: Replace a playbook in a group.

	Response Type: json

	Response Example: {"status": "ok", "id": "53614ccf1370129d6f29c7dd"}

	Input Format: json/yaml

	Inputs: Optional format parameter which controls response type. Can be json or yaml. Default is json.

	DELETE: Delete a playbook in a group.

	Response Type: json

	Response Example: {"status": "gone"}

	Input Format: None

	Inputs: None

3.2.7. Platform Gotchas

3.2.7.1. RHEL 6

You may need to add the following to your PYTHONPATH to be able to use Jinja2:

/usr/lib/python2.6/site-packages/Jinja2-2.6-py2.6.egg

3.2.8. What’s Happening

	User requests a new job via the REST endpoint

	The REST server creates a temporary response queue and binds it to the exchange with the same name.

	The REST server creates a message with a reply_to of the temporary response queue’s topic.

	The REST server sends the message to the bus on exchange re and topic job.create. Body Example: {“group”: “nameofgroup”}

	The REST server waits on the temporary response queue for a response.

	Once a response is returned the REST service loads the body into a json structure and pulls out the id parameter.

	The REST service then responds to the user with the job id.

	The temporary response queue then is automatically deleted by the bus.

3.2.9. Usage Example

The authentication mechanism used in the front end webserver could be set up to use vastly different schemes. Instead of covering every possible authentication style which could be used we will work with two common ones in usage examples: htacces and kerberos.

Note

Setting up the front end proxy server for authentication is out of scope for this documentation.

3.2.9.1. htaccess / HTTP Basic Auth

$ curl -X PUT --user "USERNAME" -H "Content-Type: application/json" --data @file.json https://rerest.example.com/api/v0/test/playbook/
Password:

... # 201 and json data if exists, otherwise an error code

3.2.9.2. kerberos

$ kinit -f USERNAME
Password for USERNAME@DOMAIN:
$ curl --negotiate -u 'a:a' -H "Content-Type: application/json" --data @file.json -X PUT https://rerest.example.com/api/v0/test/playbook/

... # 201 and json data if exists, otherwise an error code

3.2.9.3. Dynamic Variables

Passing dynamic variables requires two additions

	We must set the Content-Type header (-H ... below) to application/json

	We must pass data (-d '{....}' below) for the PUT to send to the server

This example sets the Content-Type and passes two dynamic
variables: cart which is the name of a Juicer [https://github.com/juicer/juicer] release cart, and
environment, which is the environment to push the release cart
contents to.

$ curl -u "user:passwd" -H "Content-Type: application/json" -d '{"cart": "bitmath", "environment": "re"}' -X PUT http://rerest.example.com/api/v0/test/playbook/12345/deployment/

 ... # 201 and json data if exists, otherwise an error code

See also

	RE-WORKER-JUICER

	Playbooks → Dynamic Variables

 Copyright 2014, See AUTHORS.
 Last updated on 2014-09-16 - 15:44:51 CDT.
 Created using Sphinx 1.2.2.

 Navigation

 	
 next

 	
 previous |

 	Release Engine Guide 0.0.1 documentation

 	3. Components

3.3.1. RE-WORKER-BIGIP

Release Engine Worker Plugin that interfaces with F5 BigIP devices.

Attention

This plugin is internal to Red Hat only.

This worker takes the normal MQ configuration
(conf/mq_settings.json) as it’s only configuration file:

{
 "server": "127.0.0.1",
 "port": 5672,
 "vhost": "/",
 "user": "guest",
 "password": "guest"
}

	Set the MQ config file parameters to sane values (see also:
Setting Up The Bus)

	Run the worker: python ./replugin/emailworker/__init__.py $YOUR_MQ_CONF.json

We should see output similar to the following if everything well:

[user@frober re-worker-bigip]$ python ./replugin/bigipworker/__init__.py
2014-05-19 14:39:47,080 - BigipWorker - WARNING - No app logger passed in. Defaulting to Streamandler with level INFO.
2014-05-19 14:39:47,083 - BigipWorker - INFO - Attempting connection with amqp://inceptadmin:***@messagebus.example.com:5672/
2014-05-19 14:39:47,412 - BigipWorker - INFO - Connection and channel open.
2014-05-19 14:39:47,413 - BigipWorker - INFO - Consuming on queue worker.bigip

3.3.1.1. Commands

The BigIP Worker steps are documented in Worker Steps: BigIP

 Copyright 2014, See AUTHORS.
 Last updated on 2014-09-16 - 15:44:51 CDT.
 Created using Sphinx 1.2.2.

 Navigation

 	
 next

 	
 previous |

 	Release Engine Guide 0.0.1 documentation

 	3. Components

3.3.2. RE-WORKER-FUNC

Release Engine Worker Plugin to run commands over FUNC [https://fedorahosted.org/func/].

	Configuration

	Commands

	Example: Installing a package

	Example: Stopping a Service

	Example: Trying/Checking

	More Modules

What’s FUNC?

Func stands for Fedora Unified Network Controller. Func allows
for running commands on remote systems in a secure way, like SSH,
but offers several improvements.

Func is extensible, as such it comes with several modules. Each module
gives you more options for what you do with func. Here’s a few of the
modules [https://fedorahosted.org/func/wiki/ModulesList] which Func
ships with:

	Command [https://fedorahosted.org/func/wiki/CommandModule] for running arbitrary commands somewhere remote

	Nagios [https://fedorahosted.org/func/wiki/NagiosServerModule] for handling common tasks in Nagios related to downtime and notifications

	Service [https://fedorahosted.org/func/wiki/ServiceModule] for starting, stopping, and checking the status of system services

This plugin allows you to run any number of func worker
instances. Each instance is configured to allow for calling specific
func module commands through it. However, this requires configuration
before it can work.

Note

Installation and configuration of a func infrastructure is outside
of the scope of this documentation. Please refer to the upstream
documentation [https://fedorahosted.org/func/wiki/InstallAndSetupGuide] for
additional information.

3.3.2.1. Configuration

Each running func worker requires a worker and an MQ configuration file.
The worker configuration file defines exactly which func modules and methods
the worker is allowed to run.

The configuration file uses the following pattern in JSON format:

	1
2
3
4
5
6
7

	{
 "queue": "QUEUE_NAME",
 "FUNC_MODULE": {
 "METHOD_1": ["REQUIRED", "PARAMETERS"],
 "METHOD_2": ["ONE_ITEM"],
 "METHOD_N": []
}

In this example on line 2 we see a parameter queue. This is how we
set a specific name for the queue to bind to on the message bus. This
parameter is required if you are running more than one func worker
concurrently. Using a name that defines what the workers does. For
example, if you’re using the Nagios plugin, you would create and bind
to a queue such as nagios (which is expanded to worker.nagios
internally).

The second configuration file is the normal MQ configuration used for
connecting to the bus:

{
 "server": "127.0.0.1",
 "port": 5672,
 "vhost": "/",
 "user": "guest",
 "password": "guest"
}

	Set the MQ config file parameters to sane values (see also:
Setting Up The Bus)

	Run the worker: python ./replugin/funcworker/__init__.py` -w $YOUR_CONFIG_FILE.json $YOUR_MQ_CONF.json

We should see output similar to the following if everything well:

[root@frober re-worker-func]# python ./replugin/funcworker/__init__.py
2014-05-19 14:39:47,080 - FuncWorker - WARNING - No app logger passed in. Defaulting to Streamandler with level INFO.
2014-05-19 14:39:47,083 - FuncWorker - INFO - Attempting connection with amqp://JoeUser:***@mq.example.com:5672/
2014-05-19 14:39:47,412 - FuncWorker - INFO - Connection and channel open.
2014-05-19 14:39:47,413 - FuncWorker - INFO - Consuming on queue worker.nagios

3.3.2.1.1. Example Configuration

Here is a real-life example of a func worker which may be used to run
the yumcmd modules install, remove, and update
methods.

{
 "yumcmd": {
 "install": ["package"],
 "remove": ["package"],
 "update": []
 }
}

In the above example we see on the install line that there is a
list, ["package"], with one item in it. This means that when used
as a step in a playbook a single package parameter must also
be provided.

In contrast, we can see that the update method has an empty list,
[], following it. This indicates that the yumcmd.update method
accepts no parameters. Using this method in a playbook step would
update all packages on the target system.

The following is an example using the yumcmd module in a playbook
step.

3.3.2.2. Commands

The FUNC Worker steps are documented in Worker Steps: FUNC.

3.3.2.3. Example: Installing a package

The following is an example of a playbook which
installs a single package:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10

group: inception
name: Setup megafrobber
execution:
 - description: install the megafrobber package
 hosts:
 - foo.bar.example.com
 steps:
 - yumcmd:install:
 package: megafrobber

Here we can see in lines 9 → 10 how to call the install
sub-command for the funcworker.

3.3.2.4. Example: Stopping a Service

In this example playbook we will use the
service sub-command to restart the megafrobber system
service. For reference, first we’ll look at the funcworker
configuration for the service module:

	1
2
3
4
5
6
7
8
9

	{
 "service": {
 "stop": ["service"],
 "start": ["service"],
 "restart": ["service"],
 "reload": ["service"],
 "status": ["service"]
 }
}

Recall from what we learned in the configuration section that this defines one module,
service.

As we can see above, the service module has 5 sub-commands, each
requires one parameter, service, which is the name of the service
to control.

The following example shows how to use the
funcworker.service.restart method to restart the megafrobber
service. This happens in lines 9 → 10:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10

group: inception
name: Setup megafrobber
execution:
 - description: restart the megafrobber service
 hosts:
 - foo.bar.example.com
 steps:
 - service:restart:
 service: megafrobber

3.3.2.5. Example: Trying/Checking

We can also add optional parameters tries and check_scripts. check_scripts
is an array of scripts that will be run after the command. If they all return success
(a zero return value) the whole command is considered successful. However if any
return a non zero value the step is considered failed. The tries parameter tells
the worker to try the step X number of times before giving up.

The following example will attempt the restart megafrobber and run the check_script
/usr/bin/diditwork. If the either the restart or the check script return a failure
it will try again until it’s limit of 5 tries has been hit (at which point it returns
failure back to the bus).

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12

group: inception
name: Setup megafrobber
execution:
 - description: restart the megafrobber service
 hosts:
 - foo.bar.example.com
 steps:
 - service:restart:
 service: megafrobber
 tries: 5
 check_scripts: ["/usr/bin/diditwork"]

3.3.2.6. More Modules

The func worker ships with support for several other func modules
out-of-the-box. To see them all, check out GitHub:
re-worker-func/conf/ [https://github.com/RHInception/re-worker-func/tree/master/conf]

See Func - Module List [https://fedorahosted.org/func/wiki/ModulesList] for more information.

 Copyright 2014, See AUTHORS.
 Last updated on 2014-09-16 - 15:44:51 CDT.
 Created using Sphinx 1.2.2.

 Navigation

 	
 next

 	
 previous |

 	Release Engine Guide 0.0.1 documentation

 	3. Components

3.3.3. RE-WORKER-JUICER

	About & Setup
	Juicer Client Configuration

	Dependencies

	Commands

Release Engine Worker Plugin to run Juicer commands

What’s Juicer?

The Juicer worker allows you to upload and promote batches of
RPMs into Yum [http://yum.baseurl.org/] repositories. In juicer
terminology, these batches of RPMs are referred to as release
carts [https://github.com/juicer/juicer/wiki/cart-json-specification].

3.3.3.1. About & Setup

A juicer worker allows you to upload/promote RPMs as just another
step in your release process. Note however that the juicer plugin
requires that additional information is passed to it when the release
is started. See Dynamic Variables
for more information on this topic.

To run the worker the normal MQ configuration must be defined and used.

{
 "server": "127.0.0.1",
 "port": 5672,
 "vhost": "/",
 "user": "guest",
 "password": "guest"
}

	Set the MQ config file parameters to sane values (see also:
Setting Up The Bus)

	Run the worker
	From source: python ./replugin/juicerworker/__init__.py $YOUR_MQ_CONF.json

	From install: re-worker-juicer $YOUR_MQ_CONF.json

We should see output similar to the following if everything well:

[user@frober re-worker-juicerworker]$ re-worker-juicer mq_conf.json
2014-05-19 14:39:47,080 - JuicerWorker - WARNING - No app logger passed in. Defaulting to Streamandler with level INFO.
2014-05-19 14:39:47,083 - JuicerWorker - INFO - Attempting connection with amqp://inceptadmin:***@messagebus.example.com:5672/
2014-05-19 14:39:47,412 - JuicerWorker - INFO - Connection and channel open.
2014-05-19 14:39:47,413 - JuicerWorker - INFO - Consuming on queue worker.juicer

3.3.3.1.1. Juicer Client Configuration

See the upstream juicer configuration [https://github.com/juicer/juicer/blob/master/docs/markdown/config.md]
documentation for instructions on how to setup a system accounts
juicer configuration file.

3.3.3.1.2. Dependencies

Use of the juicer worker requires a configured and running Pulp
Server [http://www.pulpproject.org/] installation. Setup and
maintenance of pulp servers is out of scope for this
documentation. However, they provide detailed setup instructions [https://pulp-user-guide.readthedocs.org/en/pulp-2.3/installation.html]
to help get you started.

3.3.3.2. Commands

The Juicer Worker steps are documented in Worker Steps: Juicer.

 Copyright 2014, See AUTHORS.
 Last updated on 2014-09-16 - 15:44:51 CDT.
 Created using Sphinx 1.2.2.

 Navigation

 	
 next

 	
 previous |

 	Release Engine Guide 0.0.1 documentation

 	3. Components

3.3.4. RE-WORKER-SERVICENOW

Release Engine Worker Plugin that does basic interaction with Service
Now [http://www.servicenow.com/].

This worker takes two configuration files. The first is the SERVICE
NOW configuration file. It should look like this:

{
 "servicenow_user": "username",
 "servicenow_password": "secret",
 "api_root_url": "https://127.0.0.1/api/now/v1"
}

	Set the MQ config file parameters to sane values (see also:
Setting Up The Bus)

	Run the worker
	From source: python ./replugin/servicenowworker/__init__.py -w $YOUR_SERVICE_NOW_CONF.json $YOUR_MQ_CONF.json

	From install: re-worker-servicenow -w $YOUR_SERVICE_NOW_CONF.json $YOUR_MQ_CONF.json

We should see output similar to the following if everything well:

[user@frober]$ re-worker-servicenow -w servicenow.json mq.json`
2014-05-19 14:39:47,080 - ServiceNowWorker - WARNING - No app logger passed in. Defaulting to Streamandler with level INFO.
2014-05-19 14:39:47,083 - ServiceNowWorker - INFO - Attempting connection with amqp://inceptadmin:***@messagebus.example.com:5672/
2014-05-19 14:39:47,412 - ServiceNowWorker - INFO - Connection and channel open.
2014-05-19 14:39:47,413 - ServiceNowWorker - INFO - Consuming on queue worker.servicenow

3.3.4.1. Commands

The ServiceNow Worker steps are documented in Worker Steps: ServiceNow.

 Copyright 2014, See AUTHORS.
 Last updated on 2014-09-16 - 15:44:51 CDT.
 Created using Sphinx 1.2.2.

 Navigation

 	
 next

 	
 previous |

 	Release Engine Guide 0.0.1 documentation

 	3. Components

3.3.5. RE-WORKER-SLEEP

Release Engine Worker Plugin that sleeps for a period of seconds.

This worker takes the normal MQ configuration as it’s only configuration file:

{
 "server": "127.0.0.1",
 "port": 5672,
 "vhost": "/",
 "user": "guest",
 "password": "guest"
}

	Set the MQ config file parameters to sane values (see also:
Setting Up The Bus)

	Run the worker: python ./replugin/emailworker/__init__.py $YOUR_MQ_CONF.json

We should see output similar to the following if everything well:

[user@frober re-worker-sleep]$ python ./replugin/sleepworker/__init__.py
2014-05-19 14:39:47,080 - SleepWorker - WARNING - No app logger passed in. Defaulting to Streamandler with level INFO.
2014-05-19 14:39:47,083 - SleepWorker - INFO - Attempting connection with amqp://inceptadmin:***@messagebus.example.com:5672/
2014-05-19 14:39:47,412 - SleepWorker - INFO - Connection and channel open.
2014-05-19 14:39:47,413 - SleepWorker - INFO - Consuming on queue worker.sleep

3.3.5.1. Commands

The Sleep Worker steps are documented in Worker Steps: Sleep.

 Copyright 2014, See AUTHORS.
 Last updated on 2014-09-16 - 15:44:51 CDT.
 Created using Sphinx 1.2.2.

 Navigation

 	
 next

 	
 previous |

 	Release Engine Guide 0.0.1 documentation

 	3. Components

3.4.1. RE-WORKER-EMAILNOTIFY

Release Engine Worker Plugin can send notifications via email.

Note

This is a notification handler and is not meant to be used in steps.

This worker takes two configuration files. The first is the EMAILNOTIFY configuration file. It should look like this:

{
 "smtp_host": "127.0.0.1",
 "smtp_port": 25,
 "smtp_from": "noreply@example.com"
}

	Set the EMAILNOTIFY parameters to match your email server configuration.

The second configuration file is the normal MQ configuration:

{
 "server": "127.0.0.1",
 "port": 5672,
 "vhost": "/",
 "user": "guest",
 "password": "guest"
}

	Set the MQ config file parameters to sane values (see also:
Setting Up The Bus)

	Run the worker: python ./replugin/emailworker/__init__.py` -w $YOUR_CONFIG_FILE.json $YOUR_MQ_CONF.json

We should see output similar to the following if everything well:

[user@frober re-worker-emailnotify]$ python ./replugin/emailworker/__init__.py -w myconf.json mq.json
2014-05-19 14:39:47,080 - EmailNotifyWorker - WARNING - No app logger passed in. Defaulting to Streamandler with level INFO.
2014-05-19 14:39:47,083 - EmailNotifyWorker - INFO - Attempting connection with amqp://inceptadmin:***@messagebus.example.com:5672/
2014-05-19 14:39:47,412 - EmailNotifyWorker - INFO - Connection and channel open.
2014-05-19 14:39:47,413 - EmailNotifyWorker - INFO - Consuming on queue worker.emailnotifyworker

 Copyright 2014, See AUTHORS.
 Last updated on 2014-09-16 - 15:44:51 CDT.
 Created using Sphinx 1.2.2.

 Navigation

 	
 next

 	
 previous |

 	Release Engine Guide 0.0.1 documentation

 	3. Components

3.4.2. RE-WORKER-IRCNOTIFY

Release Engine Worker Plugin can send notifications to IRC.

Note

This is a notification handler and is not meant to be used in steps.

This worker takes two configuration files. The first is the IRCNOTIFY configuration file. It should look like this:

{
 "server": "127.0.0.1",
 "port": 6697,
 "ssl": true,
 "channels": ["#release-engine"],
 "nick": "renotify"
}

	Set the IRCNOTIFY parameters to match your IRC server configuration.

The second configuration file is the normal MQ configuration:

{
 "server": "127.0.0.1",
 "port": 5672,
 "vhost": "/",
 "user": "guest",
 "password": "guest"
}

	Set the MQ config file parameters to sane values (see also:
Setting Up The Bus)

	Run the worker: re-worker-ircnotify -w $YOUR_CONFIG_FILE.json $YOUR_MQ_CONF.json

We should see output similar to the following if everything well:

[user@frober re-worker-ircnotify]$ re-worker-ircnotify -w $YOUR_CONFIG_FILE.json $YOUR_MQ_CONF.json
2014-05-19 14:39:47,080 - IRCNotifyWorker - WARNING - No app logger passed in. Defaulting to Streamandler with level INFO.
2014-05-19 14:39:47,083 - IRCNotifyWorker - INFO - Attempting connection with amqp://inceptadmin:***@messagebus.example.com:5672/
2014-05-19 14:39:47,412 - IRCNotifyWorker - INFO - Connection and channel open.
2014-05-19 14:39:47,413 - IRCNotifyWorker - INFO - Consuming on queue worker.ircnotifyworker

 Copyright 2014, See AUTHORS.
 Last updated on 2014-09-16 - 15:44:51 CDT.
 Created using Sphinx 1.2.2.

 Navigation

 	
 next

 	
 previous |

 	Release Engine Guide 0.0.1 documentation

 	3. Components

3.4.3. RE-WORKER-OUTPUT

Release Engine Worker Plugin consumes output from other works on the bus and writes it to files.

Note

This is an output consumer and is not meant to be used in steps.

This worker takes two configuration files. The first is the worker configuration file. It should look like this:

{
 "queue": "output",
 "output_dir": "/tmp/"
}

	Set the output_dir to where the output files should reside.

The second configuration file is the normal MQ configuration:

{
 "server": "127.0.0.1",
 "port": 5672,
 "vhost": "/",
 "user": "guest",
 "password": "guest"
}

	Set the MQ config file parameters to sane values (see also:
Setting Up The Bus)

	Run the worker
* From source: python ./replugin/outputworker/__init__.py` -w $YOUR_CONFIG_FILE.json $YOUR_MQ_CONF.json
* From install: re-worker-output -w $YOUR_SERVICE_NOW_CONF.json $YOUR_MQ_CONF.json

Note

You may need to add the following to your PYTHONPATH to be able to use Jinja2 on RHEL6: /usr/lib/python2.6/site-packages/Jinja2-2.6-py2.6.egg

We should see output similar to the following if everything well:

[user@frober]$ re-worker-output -w myconf.json mq.json
2014-05-19 14:39:47,080 - IRCNotifyWorker - WARNING - No app logger passed in. Defaulting to Streamandler with level INFO.
2014-05-19 14:39:47,083 - IRCNotifyWorker - INFO - Attempting connection with amqp://inceptadmin:***@messagebus.example.com:5672/
2014-05-19 14:39:47,412 - IRCNotifyWorker - INFO - Connection and channel open.
2014-05-19 14:39:47,413 - IRCNotifyWorker - INFO - Consuming on queue worker.output

 Copyright 2014, See AUTHORS.
 Last updated on 2014-09-16 - 15:44:51 CDT.
 Created using Sphinx 1.2.2.

 Navigation

 	
 next

 	
 previous |

 	Release Engine Guide 0.0.1 documentation

 	3. Components

3.5.1. RE-CLIENT

Release Engine - Client Tool

Todo

Define what this is better.

3.5.1.1. Running From Checkout

Todo

How do they install it?

$ export PYTHONPATH=`pwd`/src/:$PYTHONPATH
$./bin/re-client

At this point you’ll be prompted to enter some configuration values:

Could not load base rerest url from /home/tbielawa/.reclient.conf
Enter the hostname of your rerest endpoint
This will be saved in /home/tbielawa/.reclient.conf for reuse later
Hostname:

At this point you would enter the hostname of your
re-rest [https://github.com/RHInception/re-rest] endpoint.

Hostname: rerest.example.com

0) Get all playbooks ever
1) Get all playbooks for a project
2) Get a single playbook for a project
3) Update a playbook
4) Delete a playbook
5) Create a new playbook
6) Start a deployment (without any dynamic keys)
7) Quit
command>>

Release Engine Client Tools are now setup and ready to use.

3.5.1.2. Command Line Options

The re-client command accepts two optional parameters:

	--project, -p - Set the default project

	--id, -i - Set the default playbook ID

	--format, -f - Select yaml/json for the format. Default: yaml

3.5.1.2.1. Usage Example

Let’s work with example project for the duration of this session:

$./bin/re-client -p 'example project'

3.5.1.3. Notes

The REPL (command loop) has readline history enabled. This means
the up/down arrow keys work and you can edit lines of input like a
boss.

 Copyright 2014, See AUTHORS.
 Last updated on 2014-09-16 - 15:44:51 CDT.
 Created using Sphinx 1.2.2.

 Navigation

 	
 next

 	
 previous |

 	Release Engine Guide 0.0.1 documentation

 	3. Components

3.5.2. RE-WORKER

This library provides a simple base for release engine workers to build from.

3.5.2.1. Implementing a Worker

To implement a worker, subclass off of reworker.worker.Worker and
override the process method.

If there are any inputs that need to be passed in, the class level
variable dynamic should be populated.

class MyWorker(Worker):

 dynamic = ('environment', 'cart')

 ...

If a config_file is passed in on Worker creation it will be loaded
as JSON and available as self._config. Otherwise self._config
will be an empty dictionary.

3.5.2.1.1. Logging

When implementing your own worker, the re-worker base-class
provides two mechanisms for logging and reporting worker progress.

	Application-level

	Recording the kind of information system administrators need to see
for debugging is facilitated by the self.app_logger instance
variable. This information is logged to stdout.

	1
2
3
4
5

	def process(self, channel, basic_deliver, properties, body, output):

 # ...

 self.app_logger.debug("Going to frob the widget.")

	User-level

	Reporting progress is facilitated by the output parameter which
is passed to the Worker.process method. This information is
send back to the message bus where it is then collected and saved
by the output worker.

	1
2
3
4
5
6
7

	def process(self, channel, basic_deliver, properties, body, output):
 self.output = output

 # ...

 self.output.info("Release step successful with result: %s" % (
 str(result)))

3.5.2.2. Convenience Methods

Worker also provides a few convenience methods to simplify use:

Todo

Change to using actual sphinx API documentation.

3.5.2.2.1. Worker.send

Sends a message.

	Inputs:

	topic: the routing key

	corr_id: the correlation id

	message_struct: the dict or list to send as the body

	exchange: set to ‘’ to reply back to the FSM

	Returns: None

3.5.2.2.2. Worker.notify

	Inputs:

	slug: the short text to use in the notification

	message: a string which will be used in the notification

	phase: the phase to identify with in the notification

	corr_id: the correlation id. Default: None

	exchange: the exchange to publish on. Default: re

	Returns: None

3.5.2.2.3. Worker.ack

Acks a message.

	Inputs:

	basic_deliver: pika.Spec.Basic.Deliver [http://pika.readthedocs.org/en/latest/modules/spec.html#pika.spec.Basic.Deliver]
instance

	Returns: None

3.5.2.2.4. Worker.run_forever

Starts the main loop.

	Inputs: None

	Returns: None

3.5.2.2.5. Worker.process

What a worker should do when a message is received. All output
should be written to the output logger.

	Inputs:

	channel: pika.channel.Channel [http://pika.readthedocs.org/en/latest/modules/channel.html#pika.channel.Channel]
instance

	basic_deliver: pika.Spec.Basic.Deliver [http://pika.readthedocs.org/en/latest/modules/spec.html#pika.spec.Basic.Deliver]
instance

	properties: pika.Spec.BasicProperties [http://pika.readthedocs.org/en/latest/modules/spec.html#pika.spec.BasicProperties]
instance (ex: headers)

	body: dict or list that was json loaded off the message

	output: logger like instance to send output

	Returns: None

3.5.2.3. Running

Todo

Update this with how to run a custom non-packaged worker from source.

To run an instance you will need to make an instance of your worker by
passing in a few items.

	Inputs:
	mq_config: should house: user, password, server, port and vhost.

	config_file: is an optional full path to a json config file

	logger: is an optional logger. Defaults to a logger to stderr

 Copyright 2014, See AUTHORS.
 Last updated on 2014-09-16 - 15:44:51 CDT.
 Created using Sphinx 1.2.2.

 Navigation

 	
 next

 	
 previous |

 	Release Engine Guide 0.0.1 documentation

4. Tutorial: Writing Workers

	Basics
	Typical Worker Flow

	Exercise: Write a Worker from Scratch
	Directory Structure

	Scaffolding: Shebang and Imports

	Scaffolding: Class Definition

	Scaffolding: Record Job Properties

	Scaffolding: Make It Runnable

	Parse Parameters

	Run the Job

	Full MegaFrobber Worker Source

	Advanced Topics
	Message Queue Bindings
	FSM - Topics

	Worker - Queues

	Other languages

This section contains tutorials for writing your own workers. If you
haven’t already, please take a few minutes and familiarize yourself
with the re-worker API documentation.

4.1. Basics

Simple stuff.

4.1.1. Typical Worker Flow

[image: digraph workerflow { // Global Defaults // compount allows linking between subgraphs compound = true; node [fontname="Courier"]; node [shape=diamond]; "parameters\nparsed OK?"; "needful\nsuccessful?"; node [shape=component]; "send 'started' message to FSM"; "send 'failed' message to FSM"; "send 'completed' message to FSM"; "send 'failed' message to FSM"; "JSON formatted\njob parameters"; node [shape=Msquare]; "do the\nneedful"; node [shape=oval]; "initialize worker"; "return True"; "return False"; // subgraph cluster_reworker { node [shape=rect]; "initialize worker" -> "listen to channel\nfor new job parameters" -> "receive parameters"; "receive parameters" -> "ACK parameters"; "ACK parameters" -> "parameters\nparsed OK?" [label="Parse parameters"]; "JSON formatted\njob parameters" -> "receive parameters" [style="dotted", label="via message bus"]; // // First the OK "parameters\nparsed OK?" -> "send 'started' message to FSM" [label="OK"]; "send 'started' message to FSM" -> "do the\nneedful" -> "needful\nsuccessful?"; // Then the not OK "parameters\nparsed OK?" -> "send 'failed' message to FSM" [label="NOT OK"]; "send 'failed' message to FSM" -> "return False"; // "needful\nsuccessful?" -> "send 'completed' message to FSM" [label="YES"]; "send 'completed' message to FSM" -> "return True"; //////////////// "needful\nsuccessful?" -> "send 'failed' message to FSM" [label="NO"]; // fontsize = 20; label = "re-worker"; } }]

Note

Not included in the chart are some of the various
logging/notification steps which take place in a release.

Now, let’s translate what this is saying into human readable words:

	initialize worker

	In this state a process running the code representing our worker
has just been started.

	listen to channel

	Once the process has started our worker will open a channel to the
message bus and begin consuming from a queue specifically dedicated
to that kind of worker.

	receive parameters

	Once our worker is consuming from its queue, it will sit in a
waiting state until a message is received from the FSM
(re-core). This message is only sent when a
release is started.

The message will contain the parameters, or more generally
speaking, the configuration of this step in the release. See the
re-core ↔ re-workers Deployment Message
Format documentation for the specifics on what is contained in this
information.

Note: The message consumed from the message queue is a
serialized JSON datastructure. Most workers will deserialized this
message using a JSON library feature, such as the Python
json.loads() [https://docs.python.org/2/library/json.html#json.load] method.

The most important piece of information contained in this first
message is the reply_to property. This property tells our
worker the name of the temporary queue to continue all further
communication with the FSM on. Messages sent to any other
destination will be lost in the message exchange.

Additionally, this first message will contain a correlation
ID. This information should be recorded by our worker because it
is used for logging and communicating back to the FSM.

	ACK parameters

	Now that our worker has received its job parameters, the next step
is to acknowledge receiving the parameters. Our worker does
this using its AMQP librarie’s ack function or method. If our
worker is using the Python Pika [https://pika.readthedocs.org/en/0.9.13/] AMQP module, it will
provide the delivery tag as the parameter to the ack
function.

	parse parameters

	If our worker requires any unique information to do its job, then
it must parse that information from the parameters provided by the
FSM. This step typically involves verifying everything it needs to
operate was provided and is valid.

This information often includes reading which sub-command (if
applicable) to run, what (if any) hosts to operate on, parameters
to provide to subcommands, and dynamic values passed in at deployment-time.

	parameters verified

	If the parameters are parsed and it is verified that all the
required information is present, then our worker will reply back
to the FSM indicating that it is going to start running the step
now.

The body of the message sent back to the FSM is a JSON
serialized datastructure. See the Response Message Format documentation in the re-core ↔
re-worker docs for more information.

Workers using the re-worker library typically
respond by calling the worker.send()
method. When responding they should provide the reply_to
variable as the topic parameter and leave the exchange
parameter as an empty string.

	parameters invalid

	Our worker must notify the FSM in the unfortunate event that the
parameters provided were invalid. Similar to the previous step
(valid parameters) our worker will use its send() method to
send a job failed message.

Once the message has been sent our worker will abort all further
execution. If the worker is designed such that it runs in a some
kind of io-loop (such as in the re-worker library), this is as
simple as returning False while still in the process()
method.

	do the needful

	At this point our worker has been initialized, received operating
parameters from the FSM, and communicated back that it is going to
proceed with the release. The next step is for the worker to begin
doing what it was instructed to do.

The specifics of what happens in this step are different from
worker to worker. The BigIP worker, for
example, will run one of three sub-commands at this point. The
exact sub-command is dictated by the value of the subcommand
parameter.

	step complete

	If the needful was a success, then our worker will reply back to
the FSM one last time (again, using its send() method) with a
JSON serialized datastructure. The message will include a
status key set to completed.

After the message has been sent the worker will return True and
continue its loop to begin the process all over again.

	step failed

	If the needful was not a success, then our worker will reply
back to the FSM one last time (again, using its send() method)
with a JSON serialized datastructure. The message will include a
status key set to failed and possibly another key, data
with various information about the exact nature of the failure.

After the message has been sent the worker will return False
and continue its loop to begin the process all over again.

4.1.2. Exercise: Write a Worker from Scratch

In this section we will build a worker from scratch. The worker will
be written in Python [https://www.python.org/]. Additionally, the
worker will utilize the re-worker library.

To keep things simple, our new worker will pretend to frob [http://www.catb.org/jargon/html/F/frobnicate.html] (“manipulate or
adjust, to tweak”) an arbitrary thing and then report the
results. This worker will be called the megafrobber worker. The
megafrobber worker will have one sub-command: frob.

The frob sub-command requires no arguments. When the sub-command
is ran, it will take no actual actions. It will just randomly pass or
fail.

This section is separated into several sub-sections. Each sub-section
will incrementally build upon the work of the preceeding sections. At
the end, we’ll have a deployable worker.

4.1.2.1. Directory Structure

Workers adhere to the following directory structure:

re-worker-megafrobber/ - Top level
└── replugin/ - Python package directory
 ├── megafrobberworker/ - Worker code directory
 │ └── __init__.py - Worker code
 └── __init__.py - Empty file, Python module requirement

In a command-line shell, you could create this structure using the
following commands:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11

	$ WORKER=megafrobber
$ mkdir -p re-worker-${WORKER}/replugin/${WORKER}worker
$ touch re-worker-${WORKER}/replugin/__init__.py
$ touch re-worker-${WORKER}/replugin/${WORKER}worker/__init__.py
$ find .
.
./re-worker-megafrobber
./re-worker-megafrobber/replugin
./re-worker-megafrobber/replugin/__init__.py
./re-worker-megafrobber/replugin/megafrobberworker
./re-worker-megafrobber/replugin/megafrobberworker/__init__.py

4.1.2.2. Scaffolding: Shebang and Imports

Note

The remainder of this tutorial assumes the present working
directory is re-worker-megafrobber, the top-level
directory

With our directory now created, we can begin filling in some
scaffolding for our new worker. All of the following code snippets go
into replugin/megafrobberworker/__init__.py.

The first things we’ll add are the Python shebang [http://www.catb.org/jargon/html/S/shebang.html] and some standard
imports:

	1
2
3

	#!/usr/bin/env python
import reworker.worker
import logging

The shebang (line 1) is just there so that this script can be
executed from the command line. It tells our shell (ex: BASH) what
program to run the rest of the script in.

The import on line 2 will provide the standard re-worker
library for us. Finally, line 3 will allow us to properly output
application behavior.

4.1.2.3. Scaffolding: Class Definition

Following our imports comes the class definition. As we noted
previously, this example worker will use the re-worker
library. The re-worker library includes one class,
reworker.worker.Worker.

As per the re-worker documentation, to use this
class, our worker must:

	Subclass reworker.worker.Worker (line 1)

	Define a process method (line 6)

As we can see on line 1, we call our class MegafrobberWorker.

	1
2
3
4
5
6

	class MegafrobberWorker(reworker.worker.Worker):
 """
 Plugin to frob the heck out of something
 """

 def process(self, channel, basic_deliver, properties, body, output):

The parameters that we see defined on line 6 are required. This is
because of how the re-worker message bus integration code is
written.

	re-worker connects to the bus automatically upon startup

	re-worker begins consuming from the workers dedicated queue

	Upon receiving a message a callback [http://en.wikipedia.org/wiki/Callback_(computer_programming)#Python]
is ran by the AMQP library (we use Pika for this). That callback
flows into our process method

	Once in the process method, the actual worker work happens
(that’s where we are now)

See also

	The Pika Documentation [http://pika.readthedocs.org/en/latest/]

	You can read more about callbacks and their usage on the Pika
website.

4.1.2.4. Scaffolding: Record Job Properties

Our process method has a lot of arguments, this can appear
overwhelming. Which do we need to care about?

To get us started, here are some common setup actions we might take
with these properties.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19

	def process(self, channel, basic_deliver, properties, body, output):
 # Output is a logger from the python logger library. This is
 # what we report progress through
 self.output = output

 # This is the ID given to the currently happening deployment. It
 # is a unique ID used to connect all passed messages together and
 # record the deployment state in the database.
 #
 # We use it when responding to the FSM.
 self.corr_id = str(properties.correlation_id)

 # If the FSM passed us any dynamic variables, they will be in
 # the 'dynamic' key of the body parameter
 dynamic = body.get('dynamic', {})

 # reply_to is the temporary message bus queue we respond to the
 # FSM through
 self.reply_to = properties.reply_to

4.1.2.5. Scaffolding: Make It Runnable

There are only two more things we need to add to make our worker
runnable from the command line. The first is a main function, the
second is the code to call that function when requested. These should
go at the end of the file.

	1
2
3
4
5
6
7

	def main(): # pragma: no cover
 from reworker.worker import runner
 runner(MegafrobberWorker)

if __name__ == '__main__': # pragma: no cover
 main()

Note on line 3 that we pass the name of our class to the
runner function.

4.1.2.6. Parse Parameters

Some workers have subcommands which require parameters to run. By
default three parameters are always passed to workers: hosts,
command, and subcommand. Our worker will not require passing
any extra parameters. Therefore, in this tutorial, we will show how to
verify that a requested sub-command is valid.

For the cases where input is invalid, we will also demonstrate how to
abort the worker.

Note

This is within the process method

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

	# Begin parameter parsing
#
It's usually a good idea to record all of your valid
subcommands somewhere:
self._subcommands = ['frob']

Grab the REQUESTED subcommand from the 'parameters' dictionary
_subcommand = body['parameters'].get('subcommand', None)

Make sure it's recognized
if _subcommand in self._subcommands:
 # This is good, the requested subcommand is valid.
 #
 # ACK the message to make the message bus happy.
 self.ack(basic_deliver)
else:
 # This is bad, the playbook calls for an unknown subcommand
 #
 # Reject the message we received on the message bus
 self.reject(basic_deliver)

 # Output to the console that an error has occurred,
 # include the correlation ID so we can trace the error
 # back to this deployment
 self.app_logger.error(
 "%s - Rejecting message, invalid subcommand requested: %s" % (
 self.corr_id, _subcommand))

 # Use 'notify' to update the output worker of our
 # progress. This output is usually logged to a central
 # location.
 self.notify(
 'Frobbing Failed',
 "Frobbing failed. Invalid subcommand requested: %s" % _subcommand,
 'failed',
 self.corr_id)

 # Send a message to the FSM indicating that the release
 # has failed. This will cause the FSM to stop the
 # deployment.
 self.send(self.reply_to,
 self.corr_id,
 {'status': 'failed',
 "message": "invalid subcommand requested: %s" % _subcommand},
 exchange='')

 # Break out of this job and start over
 return False

End parameter parsing

The ack, notify, and send methods are described in the
primary re-worker documentation.

4.1.2.7. Run the Job

At this point we have set up all the usual scaffolding and validated
the input parameters for this job. If we haven’t aborted by now then
we will run the actual frob sub-command.

For this tutorial, the frob sub-command will just randomly pass or
fail. We’ll need an additional library for this, random, so let’s
add the import to the top of our file:

import random

It’s a good idea to write each of your sub-commands as a separate
method. For the frob sub-command it is as simple as returning a
random number grabbed from the random number generator:

	1
2
3
4
5
6
7
8

	def _frob(self):
 """
 Frob the random number generator.

 If the result is even then "frob successful". If the result is
 odd, then "frob failed"
 """
 return random.randint(0, 100)

And then, back in the process method, call this sub-command and
process the result:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

	# Begin the actual job
#
Let the FSM know we're starting the job now
self.send(
 self.reply_to, self.corr_id, {'status': 'started'}, exchange='')

self.app_logger.info('Beginning the frobbing')

_frob_result = self._frob()

Process the results
if (_frob_result % 2) == 0:
 _msg = "The frobbing passed, even random number generated: %s" % _frob_result

 self.app_logger.info(_msg)
 self.notify(
 'Frobbing passed',
 _msg,
 'completed',
 self.corr_id)

 # When a job succeeds, let the FSM know by sending
 # a 'completed' message
 self.send(self.reply_to,
 self.corr_id,
 {'status': 'completed',
 "message": _msg},
 exchange='')
 return True
else:
 _msg = 'Frobbing failed, odd random number generated: %s' % _frob_result

 self.app_logger.error(_msg)
 self.notify(
 'Frobbing failed',
 _msg,
 'failed',
 self.corr_id)

 # When a job fails, let the FSM know by sending
 # a 'failed' message
 self.send(self.reply_to,
 self.corr_id,
 {'status': 'failed',
 "message": _msg},
 exchange='')
 return False

4.1.2.8. Full MegaFrobber Worker Source

	 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146

	#!/usr/bin/env python
import reworker.worker
import logging
import random

class MegafrobberWorker(reworker.worker.Worker):
 """
 Plugin to frob the heck out of something
 """

 def process(self, channel, basic_deliver, properties, body, output):
 # Output is a logger from the python logger library. This is
 # what we report progress through
 self.output = output

 # This is the ID given to the currently happening deployment. It
 # is a unique ID used to connect all passed messages together and
 # record the deployment state in the database.
 #
 # We use it when responding to the FSM.
 self.corr_id = str(properties.correlation_id)

 # If the FSM passed us any dynamic variables, they will be in
 # the 'dynamic' key of the body parameter
 dynamic = body.get('dynamic', {})

 # reply_to is the temporary message bus queue we respond to the
 # FSM through
 self.reply_to = properties.reply_to

 # Begin parameter parsing
 #
 # It's usually a good idea to record all of your valid
 # subcommands somewhere:
 self._subcommands = ['frob']

 # Grab the REQUESTED subcommand from the 'parameters' dictionary
 _subcommand = body['parameters'].get('subcommand', None)

 # Make sure it's recognized
 if _subcommand in self._subcommands:
 # This is good, the requested subcommand is valid.
 #
 # ACK the message to make the message bus happy.
 self.ack(basic_deliver)
 else:
 # This is bad, the playbook calls for an unknown subcommand
 #
 # Reject the message we received on the message bus
 self.reject(basic_deliver)

 # Output to the console that an error has occurred,
 # include the correlation ID so we can trace the error
 # back to this deployment
 self.app_logger.error(
 "%s - Rejecting message, invalid subcommand requested: %s" % (
 self.corr_id, _subcommand))

 # Use 'notify' to update the output worker of our
 # progress. This output is usually logged to a central
 # location.
 self.notify(
 'Frobbing Failed',
 "Frobbing failed. Invalid subcommand requested: %s" % _subcommand,
 'failed',
 self.corr_id)

 # Send a message to the FSM indicating that the release
 # has failed. This will cause the FSM to stop the
 # deployment.
 self.send(self.reply_to,
 self.corr_id,
 {'status': 'failed',
 "message": "invalid subcommand requested: %s" % _subcommand},
 exchange='')

 # Break out of this job and start over
 return False

 # End parameter parsing

 # Begin the actual job
 #
 # Let the FSM know we're starting the job now
 self.send(
 self.reply_to, self.corr_id, {'status': 'started'}, exchange='')

 self.app_logger.info('Beginning the frobbing')

 _frob_result = self._frob()

 # Process the results
 if (_frob_result % 2) == 0:
 _msg = "The frobbing passed, even random number generated: %s" % _frob_result

 self.app_logger.info(_msg)
 self.notify(
 'Frobbing passed',
 _msg,
 'completed',
 self.corr_id)

 # When a job succeeds, let the FSM know by sending
 # a 'completed' message
 self.send(self.reply_to,
 self.corr_id,
 {'status': 'completed',
 "message": _msg},
 exchange='')
 return True
 else:
 _msg = 'Frobbing failed, odd random number generated: %s' % _frob_result

 self.app_logger.error(_msg)
 self.notify(
 'Frobbing failed',
 _msg,
 'failed',
 self.corr_id)

 # When a job fails, let the FSM know by sending
 # a 'failed' message
 self.send(self.reply_to,
 self.corr_id,
 {'status': 'failed',
 "message": _msg},
 exchange='')
 return False

 def _frob(self):
 """
 Frob the random number generator.

 If the result is even then "frob successful". If the result is
 odd, then "frob failed"
 """
 return random.randint(0, 100)

def main(): # pragma: no cover
 from reworker.worker import runner
 runner(MegafrobberWorker)

if __name__ == '__main__': # pragma: no cover
 main()

4.2. Advanced Topics

Hard stuff.

4.2.1. Message Queue Bindings

This section will describe how to configure your message queue
bindings so that messages are delivered to the right workers.

4.2.1.1. FSM - Topics

When the FSM reads a step from a playbook, the destination topic
is determined by:

	Splitting the execution step name (ex: juicer::promote) on the
first ::, and taking the first item (ex: juicer)

	This string is then substituted into the string worker.%s

Therefore, an execution step of juicer::promote would result in
the FSM sending messages to the topic worker.juicer.

Your message queue must be configured to route messages sent to
this topic to somewhere intelligent. Preferably to a queue which
matches the same name, i.e.: worker.juicer.

Read the next section on how workers select their queue for more
information.

4.2.1.2. Worker - Queues

When a worker using the re-worker library first starts, the
default behavior is to consume from a queue on the message bus
whose name matches worker.CLASS_STR where CLASS_STR is the
class name in all lower-case letters. For example, the
juicerworker worker (from our previous example) would want to
consume from the worker.juicerworker queue.

Still using the juicer worker as reference, if we desired it, this
worker could be configured to consume from the worker.juicer queue
by setting the queue parameter in the worker’s configuration file
to just juicer.

4.2.2. Other languages

Nothing is stopping you from writing a worker in any other language of
your choice. If you decide to do so, keep a few things in mind:

	Try to follow the re-worker reference library as close as
possible

	Make sure you ack receipt of the initial message

	The initial message is a dictionary serialized as a JSON string,
you’ll need to deserialize it

	Talk to the FSM on the temporary queue provided in the reply_to
property

	Make sure you notify the FSM upon initial failure or start, and
final failure or completion

 Copyright 2014, See AUTHORS.
 Last updated on 2014-09-16 - 15:44:51 CDT.
 Created using Sphinx 1.2.2.

 Navigation

 	
 next

 	
 previous |

 	Release Engine Guide 0.0.1 documentation

5. Development

	Build States

	Contributing
	General Guidelines

	Issue Reporting

	Testing
	Components

	Requirements

	Targets

	Running the Tests

	Troubleshooting

5.1. Build States

	Component
	State

	re-core [https://github.com/RHInception/re-core]
	[image: https://api.travis-ci.org/RHInception/re-core.png]
 [https://travis-ci.org/RHInception/re-core/]

	re-rest [https://github.com/RHInception/re-rest]
	[image: https://api.travis-ci.org/RHInception/re-rest.png]
 [https://travis-ci.org/RHInception/re-rest/]

	re-client [https://github.com/RHInception/re-client]
	[image: https://api.travis-ci.org/RHInception/re-client.png]
 [https://travis-ci.org/RHInception/re-client/]

	re-worker [https://github.com/RHInception/re-worker]
	[image: https://api.travis-ci.org/RHInception/re-worker.png]
 [https://travis-ci.org/RHInception/re-worker/]

	re-worker-bigip [https://github.com/RHInception/re-worker-bigip]
	n/a

	re-worker-emailnotify [https://github.com/RHInception/re-worker-emailnotify]
	[image: https://api.travis-ci.org/RHInception/re-worker-emailnotify.png]
 [https://travis-ci.org/RHInception/re-worker-emailnotify/]

	re-worker-func [https://github.com/RHInception/re-worker-func]
	[image: https://api.travis-ci.org/RHInception/re-worker-func.png]
 [https://travis-ci.org/RHInception/re-worker-func/]

	re-worker-ircnotify [https://github.com/RHInception/re-worker-ircnotify]
	[image: https://api.travis-ci.org/RHInception/re-worker-ircnotify.png]
 [https://travis-ci.org/RHInception/re-worker-ircnotify/]

	re-worker-juicer [https://github.com/RHInception/re-worker-juicer]
	[image: https://api.travis-ci.org/RHInception/re-worker-juicer.png]
 [https://travis-ci.org/RHInception/re-worker-juicer/]

	re-worker-output [https://github.com/RHInception/re-worker-output]
	[image: https://api.travis-ci.org/RHInception/re-worker-output.png]
 [https://travis-ci.org/RHInception/re-worker-output/]

	re-worker-sleep [https://github.com/RHInception/re-worker-sleep]
	[image: https://api.travis-ci.org/RHInception/re-worker-sleep.png]
 [https://travis-ci.org/RHInception/re-worker-sleep/]

Note

	More Inception Projects

	You can find the rest of the Red Hat Inception Team [http://developerblog.redhat.com/tag/inception/] projects on
github: GitHub: Red Hat Inception [https://github.com/RHInception/].

5.2. Contributing

This section describes the guidelines for contributing to the Release
Engine.

5.2.1. General Guidelines

Please conform to PEP 0008 [http://www.python.org/dev/peps/pep-0008] for code formatting. This specification
outlines the highlights that we require above and beyond. Your code
must follow this (or note why it can’t) before patches will be
accepted. There is one consistent exception to this rule:

	E501

	Line too long

The pep8 tests for the Release Engine include a --ignore
option to specifically exclude E501 from the tests.

Write unittests [https://github.com/ashcrow/flagon/tree/master/test] for any new
functionality, if you are up to the task. Not a requirement, but it
does get you a lot of karma.

Write intelligent commit messages [http://tbaggery.com/2008/04/19/a-note-about-git-commit-messages.html].

5.2.2. Issue Reporting

If you are reporting an issue with the Release Engine, please use the
following template when describing your issue:

Description of the issue (include full error messages):

How to reproduce the issue:

How reproducable (every time? intermittently?):

Version of the product effected (git hashes are OK):

Your operating system release-version:

What you expected to happen:

What actually happened:

5.3. Testing

All Release Engine code includes unit tests to verify expected
functionality. In the rest of this section we’ll learn how the unit
tests are put together and how to interact with them.

5.3.1. Components

Release Engine unit tests are integrated with/depend on the following
items:

	Travis CI [https://travis-ci.org/] - Free online service
providing continuous integration functionality for open source
projects. Tests are ran automatically on every git commit.

	unittest [https://docs.python.org/2/library/unittest.html] -
Python unit testing framework. All Release Engine tests are written
using this framework.

	nose [https://nose.readthedocs.org/en/latest/] - Per the nose
website: “extends unittest to make testing easier”. nose is
used to run our unit tests.

	coverage [http://nedbatchelder.com/code/coverage/] - A tool for
measuring code coverage of Python programs. For the Release Engine
we require a minimum test coverage of 80%. This is invoked by
nose automatically.

	mock [http://www.voidspace.org.uk/python/mock/] - A library for
testing in Python. It allows you to replace parts of your system
under test with mock objects (such as fake REST endpoints) and make
assertions about how they have been used.

	pep8 [https://pypi.python.org/pypi/pep8] - A tool to check Python
code against some of the style conventions in PEP 0008 [http://www.python.org/dev/peps/pep-0008].

	pyflakes [https://pypi.python.org/pypi/pyflakes] - A simple
program which checks Python source files for errors.

	virtualenv [https://virtualenv.pypa.io/en/latest/] - A tool to
create isolated Python environments. Allows us to install additonal
package dependencies without requiring access to the system
site-packages directory.

	Makefiles [http://www.gnu.org/software/make/] - Utility scripts
used for project building and testing. How Release Engine uses
Makefiles is described later in this section.

5.3.2. Requirements

	python-nose

	python-coverage

	python-mock

Some components may have additional test requirements. For example,
re-worker-func requires pyOpenSSL, which
requires openssl-devel, openssl-libs, and
libffi-devel. Additionally, re-rest requires
openldap-devel to run its unit tests.

Todo

Document other test dependencies

5.3.3. Targets

In the scope of this document and testing, we use the term target in
the context of makefile targets. For the purpose of this
documentation, we can think of these targets as pre-defined commands
coded in a makefile. Release Engine testing targets include:

	ci - Run the tests exactly how they are ran in Travis-CI

	pep8 - Run PEP 0008 [http://www.python.org/dev/peps/pep-0008] syntax checks

	pyflakes - Run pyflakes error checks

	clean - Remove temporary files and build artifacts from the
checked-out repository.

	tests - A quicker version of ci. Different from ci in
that tests uses libraries installed on the local development
workstation. tests runs the unittests, pep8 tests, and
pyflakes tests automatically.

To ensure the highest degree of confidence in test results you should
always use the ci target.

When Travis-CI runs an integration test, it calls the ci target.

5.3.4. Running the Tests

The Release Engine test suite is invoked via the Makefile. The
following is an example of how to run the ci test target manually
on the re-core component.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61

	[~/re-core]$ make ci

###
Creating a virtualenv
###
virtualenv re-coreenv
New python executable in re-coreenv/bin/python
Installing Setuptools..done.
Installing Pip...done.
. re-coreenv/bin/activate && pip install -r requirements.txt
Downloading/unpacking pika>=0.9.12 (from -r requirements.txt (line 1))

... snip ...

Successfully installed pep8 nose coverage mock
Cleaning up...
###
Listing all pip deps
###
. re-coreenv/bin/activate && pip freeze
coverage==3.7.1
mock==1.0.1
nose==1.3.3
pep8==1.5.7
pika==0.9.13
pymongo==2.7.1
wsgiref==0.1.2
###
Running PEP8 Compliance Tests in virtualenv
###
. re-coreenv/bin/activate && pep8 --ignore=E501,E121,E124 src/recore/
###
Running Unit Tests in virtualenv
###
. re-coreenv/bin/activate && nosetests -v --with-cover --cover-min-percentage=80 --cover-package=recore test/
Verify using init_amqp provides us with a connection ... ok
Loggers are created with appropriate handlers associated ... ok

... snip ...

Verify create_json_str produces proper json ... ok
Verify load_json_str produces proper structures ... ok
Verify config parsing works as expected. ... ok

Name Stmts Miss Cover Missing

recore 36 0 100%
recore.amqp 72 4 94% 79, 169-172
recore.constants 1 0 100%
recore.fsm 179 25 86% 97-103, 148-152, 199-249
recore.job 0 0 100%
recore.job.create 25 0 100%
recore.mongo 62 5 92% 92-100
recore.utils 13 0 100%

TOTAL 388 34 91%
--
Ran 35 tests in 0.047s

OK
:

On line 1 we see how to call a makefile target. In this case it’s
quite straightforward: make ci. Other targets are called in the
same way. For example, to run the clean target, you run the
command make clean.

On line 29 we see a header printed, Running PEP8 Compliance Tests
in virtualenv. By calling the ci target, make automatically
knows what other targets must be called as well, such as ci-pep8
and ci-unittests (seen on line 33).

5.3.5. Troubleshooting

If you find yourself unable to run the unit tests:

	Search [https://www.google.com] for relevant error messages

	Read the error message closely. The solution could be hidden in
the error message output. The problem could be as simple as a
missing dependency

	If you are unable to figure out all the necessary dependencies to
run the tests, file an issue on that specific projects GitHub issue
tracker. Include the full error message.

 Copyright 2014, See AUTHORS.
 Last updated on 2014-09-16 - 15:44:51 CDT.
 Created using Sphinx 1.2.2.

 Navigation

 	
 next

 	
 previous |

 	Release Engine Guide 0.0.1 documentation

6. Message Formats

	re-rest ↔ re-core
	Deployment Message Format
	Simple Deployment Message Format

	Dynamic Deployment Message Format

	Deployment Response Message Format

	re-core ↔ re-workers
	Deployment Message Formats
	Simple Message Format

	Argument Message Format

	Dynamic Message Format

	Per-Step Notifications

	Response Message Formats
	General Syntax

	Job Started

	Job Completed

	Job Failed

	Notification Message Format

	Output Message Format

See also

	GitHub: RHInception/re-common [https://github.com/RHInception/re-common/tree/master/schemas]

	The re-common repository holds JSON Schema [http://spacetelescope.github.io/understanding-json-schema/]
files which can be used for message validation.

6.1. re-rest ↔ re-core

re-rest produces two formats: Deployment Message Format and Notification Message Format. It also receives on message format in
return: Deployment Response Message Format.

6.1.1. Deployment Message Format

The Deployment Message format comes in two flavors, Simple and Dynamic.

6.1.1.1. Simple Deployment Message Format

The simple format has two required keys: group and playbook_id.

Required Keys:

	group: the group’s name as a string

	playbook_id: the specific playbook in the group to utilize

Example:

{
 "group": "My Group",
 "playbook_id": "1234567890"
}

6.1.1.2. Dynamic Deployment Message Format

The dynamic format adds a key to the simple format: dynamic.

Note

For more information on dynamic variables see Dynamic Variables.

Required Keys:

	group: the group’s name as a string

	playbook_id: the specific playbook in the group to utilize

	dynamic: a JSON object holding key/values for specific workers

Example:

{
 "group": "My Group",
 "playbook_id": "1234567890",
 "dynamic": {
 "cart": "my cart",
 "environment": "QA"
 }
}

6.1.1.3. Deployment Response Message Format

This format is sent from re-core back to re-rest which tells re-rest if the deployment was accepted or not.
The message has one key: id. If the deployment was able to start the id will have a deployment id in it. If
there was an issue starting a deployment, for example, because the group or playbook doesn’t exist, the id
will be null.

Required Keys:

	id: the deployment id or null

Example of a Deployment Successfully Starting:

{
 "id": "9999999999999999"
}

Example of a Deployment Failing to Start:

{
 "id": null
}

6.2. re-core ↔ re-workers

While executing releases, the re-core component emits messages in
one of three formats. The format selected is determined by the type of
execution step being ran.

	Simple

	For execution steps which require no arguments

	Argument

	For execution steps which require defined

	Dynamic

	For execution steps which require dynamic arguments

In the rest of this section we will find that these three formats are
very similar in structure. Each section will highlight the elements
which make the respective format unique from the others.

6.2.1. Deployment Message Formats

This section describes the message formats emitted by re-core to
workers.

6.2.1.1. Simple Message Format

On line 8 in the following playbook we can see there is only one
step to execute, bigip:OutOfRotation. From how the step is
written, as a simple string, we know that this step requires no
arguments. That is to say, we do not need to define any parameters in
the playbook or provide any dynamic data when starting the release.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11

	{
 "name": "docs test",
 "group": "test",
 "execution": [
 {
 "description": "sequence 0",
 "hosts": ["host01.example.com"],
 "steps": ["bigip:OutOfRotation"]
 }
]
}

For an execution step like this (line 8), re-core selects the
simple message format. The following example shows the format of the
message which it would emit to the bus.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10

	{
 "parameters": {
 "hosts": ["host01.example.com"],
 "command": "bigip",
 "subcommand": "OutOfRotation"
 },
 "group": "test",
 "dynamic": {},
 "notify": {}
}

This is the simplest message format used by re-core when
interacting with simple workers. As such, we can see that it’s quite
terse. The Argument and Dynamic message formats use this same
structure, however they fill in different items.

On line 2 we have the parameters item. This holds the basic
information required for this worker to complete its job:

	hosts

	An array of hosts to apply the step to

	command

	The name of the worker being utilized

	subcommand

	The specific action the worker should take

Additionally the parameters item has two sibblings: group and
dynamic. These items are always sent to the worker, even if (as in
this example), there is no dynamic data to send.

6.2.1.2. Argument Message Format

On line 10 in the following playbook we can see there is only one
step to execute, service:Restart. From how the step is written, as
a dictionary, we know that this step requires one argument,
service which is defined as megafrobber (line 11).

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17

	{
 "name": "docs test",
 "group": "test",
 "execution": [
 {
 "description": "sequence 0",
 "hosts": ["host01.example.com"],
 "steps": [
 {
 "service:Restart": {
 "service": "megafrobber"
 }
 }
]
 }
]
}

For an execution step like this (line 10), re-core selects the
argument message format. The following example shows the format of the
message which it would emit to the bus.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

	{
 "parameters": {
 "service": "megafrobber",
 "hosts": [
 "host01.example.com"
],
 "subcommand": "Restart",
 "command": "service"
 },
 "group": "test",
 "dynamic": {},
 "notify": {}
}

What makes this message format different from the previous format is
the presence of an additional key in the parameters item. That key
is service (line 3). This comes directly from line 11 in
the example playbook.

6.2.1.3. Dynamic Message Format

Still referencing the previous playbook (Argument Message Format), let’s add an execution step which
requires dynamic arguments (this example only shows the additional
step).

	1
2
3
4
5
6
7
8

	{
 "juicer:Promote": {
 "dynamic": [
 "cart",
 "environment"
]
 }
}

See also

	RE-WORKER-JUICER

	Documentation for the re-worker-juicer worker

On line 2 we see that the execution step is called
juicer:Promote. On the following line we see the dictionary key
dynamic, and that it’s value is a list type. The items in the
list (lines 4 → 5) indicate the required dynamic variables
to run the step. This step requires two such variables, cart and
environment. The user would supply the values for these variables
when starting the release.

Note

For more information on dynamic variables see Dynamic
Variables.

The following example shows the format of the message which
re-core would emit to the bus.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19

	{
 "parameters": {
 "command": "juicer",
 "dynamic": [
 "cart",
 "environment"
],
 "subcommand": "Promote",
 "hosts": [
 "host01.example.com"
]
 },
 "group": "test",
 "dynamic": {
 "cart": "bitmath",
 "environment": "re"
 },
 "notify": {}
}

Here we see a familiar key appearing in the parameters item,
dynamic.

Warning

In future releases, the dynamic key will not be copied to
workers in the parameters item. It will only appear as a
sibbling of the parameters item.

Now, different from the previous format (argument), we see the
dynamic item (sibbling to parameters) contains actual
key-values (lines 14 → 16).

	dynamic

	A dictionary with the required dynamic variables for a worker to
run. The type of each argument is dictated by the respective
worker.

6.2.1.4. Per-Step Notifications

Auxiliary to the formats we’ve just discussed, are per-step
notifications. Per-step notifications are an
optional item which may be added to any given step (simple,
argument, and dynamic). Using the previous example playbook for reference, we would see notifications
defined as in lines 6 → 8, below:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14

	{
 "steps": [
 {
 "service:Restart": {
 "service": "megafrobber",
 "notify": {
 "started": {
 "irc": ["PHB", "#teamchannel"]
 }
 }
 }
 }
]
}

The corresponding message sent to workers, with the additional
notify item would look like lines 12 → 14 in the following
example.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17

	{
 "parameters": {
 "service": "megafrobber",
 "hosts": [
 "host01.example.com"
],
 "subcommand": "Restart",
 "command": "service"
 },
 "group": "test",
 "dynamic": {},
 "notify": {
 "started": {
 "irc": ["PHB", "#teamchannel"]
 }
 }
}

See also

	Playbooks - Notify

	The documentation for notify elements in playbooks. That
section defines the allowed syntax for the notify item.

6.2.2. Response Message Formats

Complimenting the Deployment Message Formats are the Response Message
Formats. There are three status messages which workers may reply to
re-core with. This section describes the messages which
workers send to the re-core
component.

6.2.2.1. General Syntax

Status messages are defined as:

	Type: dict

	Required Keys: status

	Type: string

	Allowed Values:
	started

	completed

	failed

	Optional Keys: data

	Type: Any JSON Serializable datastructure [https://docs.python.org/2/library/json.html#json.dump]

6.2.2.2. Job Started

After a worker has received a message from re-core, the message
payload is inspected for correctness. If the message payload is
successfully verified then the worker will reply to re-core with a
status update message indicating the job has been started:

{
 "status": "started"
}

6.2.2.3. Job Completed

Once a worker has completed the job it was given(without errors), the
worker will reply to re-core with a status update message
indicating success:

{
 "status": "completed"
}

Optionally a worker may reply to re-core with an additional
item, data. The value of the data key may be of any type.

Example

	1
2
3
4
5
6
7

	{
 "status": "completed",
 "data": {
 "items_frobbed": 1337,
 "avg_time_to_frob_ms": 100
 }
}

On line 3 we see the data key being defined in the response
message. On lines 4 and 5 we see two additional items being
reported: items_frobbed (the number of items which were
frobnicated [http://www.catb.org/jargon/html/F/frobnicate.html])
and avg_time_to_frob_ms, the average amount of time (in
miliseconds) it took to frob each item.

Important

The data item is not currently used by any Release Engine
component

Remember that in the previous example, items_frobbed and
avg_time_to_frob_ms are just made-up examples. In reality,
workers should use the notification system for communicating such information.

6.2.2.4. Job Failed

If for some reason a worker cannot start a job (for example, due to
insufficient or incorrect parameters), or if there is an error while
executing the job, then the worker will reply to re-core with a
status update message:

{
 "status": "failed"
}

6.3. Notification Message Format

Notifications are sent out by components of the Release Engine and follow a standard message format. This format is then consumed
by notification workers who turn the standard format into an external notification of some kind (like email).

The Notification Message Format has 4 required keys: slug, message, phase and target.

Required Keys:

	slug: A “short” message (up to 80 characters).

	message: The message of the notification.

	phase: The phase that the notification occured within: “started”, “completed”, “failed”

	target: A list denoting where the notification should go. This may be irc nicknames, email address, etc.. and is different for different workers.

Note

Even though slug and message are required it does not mean the notification worker will use them both. Some notification workers
will only use one or the other due to space constraints. However, if either key is missing the notification will be rejected as
malformed and/or cause problems!

Example:

{
 "slug": "RPM's have been promoted",
 "message": "The rpms in deployment 12345667890 have been promoted from DEV to QA and are ready for installation.",
 "phase": "completed",
 "target": ["someone@example.com"]
}

6.4. Output Message Format

Notifications are sent out by workers connected to the Release Engine and follow a standard and very simple message format. This format is then consumed by the output worker who turns the standard format into messages in a file.

The Output Message Format has 1 key: message. The only other bit of information needed by an output worker is the correlation id which happens to be stored in the AMQP properties.

Required Keys:

	message: The message which should be written to a file.

Example:

{
 "message": "Something happened and you should know about it"
}

 Copyright 2014, See AUTHORS.
 Last updated on 2014-09-16 - 15:44:51 CDT.
 Created using Sphinx 1.2.2.

 Navigation

 	
 next

 	
 previous |

 	Release Engine Guide 0.0.1 documentation

7. Playbooks

	Example Playbook

	Playbook Components

	Execution Sequences
	Required Items
	Hosts

	Steps
	Steps - Strings

	Steps - Keyword Arguments

	Steps - Dynamic Arguments

	Optional Items
	Description

	Notify

	Putting it all together

Playbooks are documents which describe the exact set of steps required
to successfully start and finish a given software release. When the
Release Engine begins a deployment, the
actions it takes come directly from playbooks.

A playbook might be ran automatically each time a code builder
finishes so that it may deploy the latest snapshots. Alternatively, if
more control is desired over the release process, playbooks may be ran
by hand. Playbooks may be written in YAML syntax, or optionally in
JSON Syntax.

In this section we’ll learn:

	what a playbook looks like (by reviewing a simple example)

	the major items of playbooks

	the basics of how to describe execution steps in your playbooks, including:

	describing a release step

	identifying which worker to use

	passing data to the worker

7.1. Example Playbook

Here is an example of what a super simple playbook looks like. The
playbook is owned by the group called inception.

When ran, all this would do is restart the httpd service on
foo.bar.example.com

	1
2
3
4
5
6
7
8
9

group: inception
name: Simple playbook
execution:
 - description: restart httpd
 hosts:
 - foo.bar.example.com
 steps:
 - service:Restart: {service: httpd}

7.2. Playbook Components

A Release Engine playbook is made up of the following required
items:

	group

	A short string (acronyms are best) defining the ownership of this
playbook. Think of it like the unix group a team might all be
members of.

The group in our example is inception

	execution

	A list of playbook execution sequences. These execution
sequences are composed of release steps and are accompanied by
supporting meta-data. These sequences are explained fully in
Execution Sequences.

In our example, we have one execution sequence with one release
step (service:Restart).

Additionally, a playbook may define the optional item:

	name

	A short description of what this playbook accomplishes overall.

In our example the name is Simple playbook.

7.3. Execution Sequences

Recall that execution items hold a list type. Each item in the
list is an execution sequence. This section describes exactly what
execution sequences do, and how to write our own.

In our example, simple playbook, the
execution sequence is defined in lines 5 → 9. Let’s review those
lines again:

	1
2
3
4
5
6
7
8
9

group: inception
name: Simple playbook
execution:
 - description: restart httpd
 hosts:
 - foo.bar.example.com
 steps:
 - service:Restart: {service: httpd}

Like playbooks themselves, each execution sequence is comprised of
several required and optional elements. In Sample playbook we can
see several items are already being used: description, hosts,
and steps. The following sections will describe these, and all
other items which are allowed in execution steps.

7.3.1. Required Items

This section describes the required items in execution sequences.

7.3.1.1. Hosts

	Required: Yes

	Argument type: list

	Default: None

The hosts element is used to describe the target hosts for the
script to act on.

- hosts:
 - www01.web.ext.example.com
 - www02.web.ext.example.com
 - www03.web.ext.example.com

Or in YAML shorthand:

- hosts: [www01.web.ext.example.com, www02.web.ext.example.come, www03.web.ext.example.com]

7.3.1.2. Steps

	Required: Yes

	Argument type: list

	Default: None

The steps element defines the steps that will be performed on each
host in hosts. The syntax of each possible step varies, however
they will assume one of three legal forms, respective to the
information (if any) which the execution step requires to run. In
brief, these forms are described below:

	Some steps require no information at all, as such they are given as strings

	Some require explicit parameters given in the form of keyword arguments

	Similar to the previous form, some steps require an enumeration of
their dynamic parameters

7.3.1.2.1. Steps - Strings

An execution step may be a simple string. To us, this means that this
given step requires no additional information. The actual workers
implementing each step may include possible several
sub-commands. Because of this it is common to see step names given in
colon delimited notation. In this form the string leading up to but
not including the colon (”:”) character refers to the worker or
module. The string after the colon character refers to the
specific sub-command to run.

OK. Enough of the boring stuff. Let’s see some examples.

Assume there is a module called logrotate, this module provides
one sub-command: Rotate.

The documentation for the logrotate module tell us that the
Rotate sub-command requires no keyword parameters. That is to say,
we can define it in our execution steps as a simple string. Recall
that steps are denoted using colon notation, where the module name
comes first, followed by the sub-command. In this case our module is
logrotate and our sub-command is Rotate. We can see this on
line 9 in the following example:

	1
2
3
4
5
6
7
8
9

group: inception
name: Simple playbook
execution:
 - description: Rotate all the megafrobber logs
 hosts:
 - foo.bar.example.com
 steps:
 - logrotate:Rotate

But what is happening exactly in this example? On line 9 we see
the entry: - logrotate:Rotate. Recall that each step is given as
an item to the steps list. This is why line 9 in the previous
code example begins with a hyphen character. In YAML this indicates a
list item.

Note closely exactly how we gave logrotate:Rotate, because in
the next example this will change very slightly.

7.3.1.2.2. Steps - Keyword Arguments

Now let us assume there is a module called service which can
control system services. The documentation for this module tells us
that there are three sub-commands provided: Start, Stop, and
Restart. Additionally, the documentation tells us that each
sub-command requires one keyword parameter: service. On lines
9 and 10 in the following example, we see how to provide
keyword arguments to steps:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10

group: inception
name: Simple playbook
execution:
 - description: Restart the megafrobber service
 hosts:
 - foo.bar.example.com
 steps:
 - service:Restart:
 service: megafrobber

Or in YAML shorthand (only focusing on the step definition)

	1
2
3

...
 - service:Restart: {service: megafrobber}

Let’s look closer at this and see exactly what is happening.

Recall that playbooks are YAML Documents. As such, there are
defined ways to describe different datastructures. Review the
dictionary section in YAML Scripts if you need a refresher.

The service:Restart sub-command requires one parameter,
service. You describe parameters in execution steps by using a
hash, or dictionary. For our example, a dictionary describing a
keyword service with value megafrobber would look like the
following example in YAML:

	1
2

service: megafrobber

Additionally, recall that you can nest datastructure in YAML. If we
wanted to represent a list of dictionaries, we could do that in the
following way. Here’s an example of a list of nested dictionaries:

	1
2
3
4
5

- thingies:
 service: megafrobber
- stuffs:
 penguins: cute

Or in alternative representation:

	1
2

[{thingies: {service: megafrobber}}, {stuffs: {penguins: cute}}]

Now that we know all of this, to give the required parameters to our
step we will define the step as a dictionary key with a
nested-dictionary describing our parameters. This is shown on lines
8 and 9 in the following example:

	1
2
3
4
5
6
7
8
9

...
execution:
 - description: Restart the megafrobber service
 hosts:
 - foo.bar.example.com
 steps:
 - service:Restart:
 service: megafrobber

Important

	Note the syntax change

	In the previous example we only gave the string:
logrotate:Rotate. Now, instead of a string we’re describing a
dictionary key.

Therefore, the text for this step begins with a hyphen character (to
indicate a list item) and ends with a colon character.

Finally, on line 4 you see the provided parameters.

If there were a module which required more than one parameter, the
syntax is very similar. Lines 4 → 6 show this in the following
example:

	1
2
3
4
5
6

...
 - service:Restart:
 service: megafrobber
 foo: bar
 noop: true

7.3.1.2.3. Steps - Dynamic Arguments

This section is about dynamic arguments. Dynamic arguments differ
from normal arguments in that their values are not stored in
playbooks. Rather, within a playbook, we assert that their values will
be provided by the calling client when starting a deployment. The
syntax for defining dynamic arguments differs only slightly from how
keyword arguments are defined.

The scope of this section is limited to the role of dynamic arguments
in playbooks only. That is to say, discussion of dynamic arguments
in worker development will not be covered here. Instead, see the
re-worker documentation for that
information.

Caution

The ability for clients to provide a broad spectrum of dynamic data is both a pro and a con.

If you’re writing a new worker, think very
carefully before making arguments dynamic. Consider if the there
is a non-interactive way for the information to be obtained
instead.

7.3.1.2.3.1. Use Cases

Situations where dynamic arguments may be required are generally
limited to actions which require data that changes every, or nearly
every, release. Examples might include:

	Change Record IDs [http://en.wikipedia.org/wiki/Change_management]

	User Story IDs [http://www.scrumalliance.org/community/articles/2010/april/new-to-user-stories]
	or any other agile/scrum related work item

	A target environment [http://en.wikipedia.org/wiki/Development_environment_(software_development_process)]

For a more complete example, imagine our workplace has strict policies
around software releases. These policies state that any software
release must have an associated change record with it. Additionally
the policy states that every time a release happens for a change, an
update to the change record document must be recorded. This update
must indicate the date of the release.

In this situation, the pragmatic approach to automating this task
would be to develop a worker which can interface with the change
management system and add updates to the change record over an
API. Let’s pretend such a worker already exists.

It is clear that we cannot hard-code change record numbers into the
worker. And storing this information in the playbook would require a
manual update to the playbook every time a new change is
created. Furthermore, this limitation effectively nullifies the
ability of a playbook to be used for two changes happening in an
overlapping time span.

This is an excellent opportunity to use dynamic variables.

The following examples will be using a fictional worker called
change. This worker has one usable function: Update. The
change worker documentation provides the following API signature
for the change:Update function:

	Function: change:Update

	Arguments:

	None

	Dynamic Arguments:

	Name: id

	Required: True

	Type: string or int

	Description: The ID of the change record to update

For the rest of this section, let’s pretend our id is CHG1337.

7.3.1.2.3.2. Dynamic Argument Syntax

Let’s begin by considering our example simple playbook again.

	1
2
3
4
5
6
7
8
9

group: inception
name: Simple playbook
execution:
 - description: restart httpd
 hosts:
 - foo.bar.example.com
 steps:
 - service:Restart: {service: httpd}

However, instead of just restarting the httpd service, we have to
have an additional step: updating the change record (CHG1337). In
this section we will learn how add that step.

The general syntax for defining a step with dynamic arguments is shown
on lines 4 → 9 in the following example:

	1
2
3
4
5
6
7
8

...
 steps:
 - worker:Function:
 dynamic:
 - arg_name_0
 - arg_name_1
 - arg_name_2

	Line 4

	As before, we begin by providing the worker.Function name,
ending with a : character

	Line 5

	We define a dictionary key called dynamic. Again note, this
must end with a : character.

	Lines 6 → 9

	We define the value of the dynamic key. This value must be
a list.

The items in the list are arg_name_0, arg_name_1, and
arg_name_1. Each of these is the name of a dynamic variable
required by worker:Function.

Applying this example to our fictional situation will yield the
following playbook:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12

group: inception
name: Simple playbook
execution:
 - description: restart httpd
 hosts:
 - foo.bar.example.com
 steps:
 - change:Update:
 dynamic:
 - id
 - service:Restart: {service: httpd}

	Line 9

	Insert the new sequence step, change:Update

	Line 10

	Begin the dynamic argument dictionary

	Line 11

	Define the dynamic argument list with one item: id

7.3.1.2.3.3. Providing Values

Now that we have learned how to add a sequence step that requires
dynamic arguments to a playbook, it might be helpful to quickly review
how clients can provide the information.

A commonly used command line tool for interacting with REST endpoints
(such as RE-REST) is curl. Put simply, curl
allows you to make a request to anything http. This is exactly
like following a hyperlink in a web page.

The following is an example of how to use the curl command to provide
the value of the dynamic argument, id, to the release engine and
start a deployment.

	1
2
3
4

	$ curl -u "user:passwd" -H "Content-Type: application/json" \
-d '{"id": "CHG1337"}' \
-X PUT \
http://rerest.example.com/api/v0/test/playbook/12345/deployment/

Line 2 utilizes the -d (or --data) option to provide the
value of the dynamic argument. When curl is ran in this manner,
dynamic arguments are provided by describing a dictionary including
key-value pairs where the key is the dynamic argument name, and the
value is the unique-value of that argument for this particular
deployment. In this example the dictionary is {"id": "CHG1337"}.

See also

	RE-REST - Dynamic Variables

	See the RE-REST → dynamic variables documentation for a complete review
of this topic.

7.3.2. Optional Items

This section describes the optional items which are allowed in
execution sequences.

7.3.2.1. Description

Finally, an execution step may define a optional description
item.

	Required: No

	Argument Type: string

	Default: None

The description element allows you to provide a useful
human-readable description of what the step is exactly supposed to
do. Use of description items are encouraged.

Recall our previous example of using service.Restart to restart
the megafrobber service. Below, line 5, shows an example of
how to use the description item.

	1
2
3
4
5
6
7
8
9

group: inception
name: Simple playbook
execution:
 - description: Restart the megafrobber service
 hosts:
 - foo.bar.example.com
 steps:
 - service.Restart: {service: megafrobber}

Because this item is optional, we could just as well have omitted it entirely:

	1
2
3
4
5
6
7
8

group: inception
name: Simple playbook
execution:
 - hosts:
 - foo.bar.example.com
 steps:
 - service.Restart: {service: megafrobber}

7.3.2.2. Notify

	Required: No

	Argument type: dict

	Default: None

The notify element allows you to set custom notification hooks
which trigger at different phases of each sequence step. For
example, you may desire to receive an email every time an RPM
promotion step completes, or fails.

Here’s an example of a notify step that updates IRC when the step
has started:

	1
2
3
4
5
6
7
8

...
 steps:
 - service:Restart:
 service: httpd
 notify:
 started:
 irc: ["PHB", "#teamchannel"]

	Line 6

	Shows the beginning of the notify syntax.

	Line 7

	This indicates which phase of worker execution this notification is for.

Recognized phases include: started, completed, and failed

	Line 8

	Define the IRC notification parameters.

For the irc item we define a list of users/channels for
messages to be sent to.

In this example, the user PHB would be notified directly with
status updates. Additionally, a notification would be sent to the
channel #teamchannel.

See also

	Components

	For a list of available notification workers, see the
Components section.

7.4. Putting it all together

To finish up, let’s put together everything we’ve seen up to now. That
will include hosts, and some example items for steps.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

Playbook owned by group inception
group: inception

This playbook is clearly awesome:
name: Simple playbook

This playbook executes **two** sequences of steps for this
release:
execution:

 ##
 # Sequence 1
 ##
 # Including a description is optional. This must be a string.
 - description: frobnicate these lil guys
 hosts:
 - foo.dev.example.com
 - bar.ops.example.com

 # Install megafrobber on all our hosts ahead of time
 preflight:
 - yumcmd:install:
 package: "megafrobber"

 steps:
 # Some steps don't require parameters:
 - bigip:OutOfRotation

 # Whereas, some require parameters:
 - misc:Echo:
 input: "This is a test message"

 # And some times you just want to tell the world what you're doing
 - frob:Nicate:
 things: "all the things"
 notify:
 started:
 irc: ["PHB", "#myteam"]

 ##
 # Sequence 2
 ##
 - description: then frobnicate the other half
 hosts:
 - dev.foo.example.com
 - ops.bar.example.com

 steps:
 - bigip:OutOfRotation

 # Some may even accept lists as the value of their parameters
 - misc:ListFrob:
 frob_list:
 - item1
 - item2
 - item3

Todo

Describe interesting parts of the previous example

 Copyright 2014, See AUTHORS.
 Last updated on 2014-09-16 - 15:44:51 CDT.
 Created using Sphinx 1.2.2.

 Navigation

 	
 next

 	
 previous |

 	Release Engine Guide 0.0.1 documentation

8. Worker Steps

This section documents the Playbook syntax for all
of the workers included with the Release Engine. What follows includes
formal signatures of each step, as well as examples of each step in
playbooks.

	Juicer
	juicer:promote

	BigIP
	bigip:InRotation

	bigip:OutOfRotation

	bigip:ConfigSync

	FUNC
	Puppet
	puppet:Run

	puppet:Enable

	puppet:Disable

	Command
	command:run

	Service
	Example

	service:stop

	service:start

	service:restart

	service:status

	service:reload

	Yum Cmd
	yumcmd:install

	yumcmd:remove

	yumcmd:update

	Nagios
	nagios:ScheduleDowntime

	Sleep
	sleep:Seconds

	ServiceNow
	servicenow:DoesChangeRecordExist

8.1. Juicer

8.1.1. juicer:promote

Promote a release cart to a specified environment. It is recommended
that this command is used in an execution sequence only a single dummy
host listed in the hosts array. This will prevent the step from
being ran multiple times.

Parameters

	dynamic (type: list)
	Required: True

	Items: The strings environment and cart

Example

	1
2
3
4
5
6

	hosts: ['localhost']
steps:
 - juicer:promote:
 dynamic:
 - environment
 - cart

Note

Recall that playbooks which have steps including dynamic
parameters require the values for those
parameters to be passed when starting the deployment.

8.2. BigIP

8.2.1. bigip:InRotation

Enable the current host in the BigIP.

Example

	1
2
3

	hosts: ["example01.com", "example02.com"]
steps:
 - bigip:InRotation

8.2.2. bigip:OutOfRotation

Disable the current host in the BigIP.

Example

	1
2
3

	hosts: ["example01.com", "example02.com"]
steps:
 - bigip:OutOfRotation

8.2.3. bigip:ConfigSync

Sync the BigIP configuration from a primary to a secondary.

Parameters

	envs (type: list)
	Required: True

	Items: Strings of environment names

Example

	1
2
3
4

	hosts: ["example01.com", "example02.com"]
steps:
 - bigip:ConfigSync:
 envs: ["qa", "stage", "prod"]

8.3. FUNC

The FUNC worker has several commands (with their own subcommands)
available. They are all documented on this page.

8.3.1. Puppet

The puppet module allows you to interact with the puppet
service on remote hosts.

8.3.1.1. puppet:Run

Parameters

The parameters to the Run subcommand can be mixed and matched
together. That is to say, none of the parameters given below are
mutually exclusive.

	noop (type: boolean)
	Required: False

	Default: False

	Description: Set to True to enable noop mode (show
what would have happened)

	CLI Equivalent: puppet agent --test --noop

	enable (type: boolean)
	Required: False

	Default: False

	Description: Set to True to enable the puppet agent prior
to running puppet. Note that running puppet will not be
attempted if the enable command fails

	CLI Equivalent: puppet agent --enable && puppet agent --test

	tags (type: list of strings)
	Required: False

	Default: None

	Description:

	CLI Equivalent: puppet agent --test --tags sometag anothertag moretags

Example

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

	hosts: ['localhost']
steps:
 # Basic subcommands
 - puppet:Run
 - puppet:Enable
 - puppet:Disable

 # Now with some extra options

 # Run puppet in noop mode
 - puppet:Run:
 noop: True

 # Run puppet in noop mode, and make sure the agent is enabled first
 - puppet:Enable
 - puppet:Run:
 noop: True

 # Run puppet in noop mode, and make sure the agent is enabled
 # first, but as one single step
 - puppet:Run:
 noop: True
 enable: True

 # Equivalent to 'puppet agent --test --tags yum auth package'
 - puppet:Run:
 tags:
 - yum
 - auth
 - package

8.3.1.2. puppet:Enable

Parameters

	The Enable subcommand does not accept any parameters

	1
2
3

	hosts: ['localhost']
steps:
 - puppet:Enable

8.3.1.3. puppet:Disable

Parameters

	motd (type: string or False)
	Required: False

	Default: puppet disabled by Release Engine at 2014-09-16 16:27:11.075617

	Description: The puppet:Disable sub-command will
automatically append a message to /etc/motd indicating that
the puppet agent has been stopped. This behavior can be disabled
by setting motd to False, or customized by setting
motd to a message of your choice. Use %s to substitute a
datestring (per str(datetime.datetime.now())) into your message

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12

	hosts: ['localhost']
steps:
 # Just disable the puppet agent, motd is still updated
 - puppet:Disable

 # Disable the agent, but don't update the motd
 - puppet:Disable
 motd: False

 # Disable the agent, and put a custom message in /etc/motd
 - puppet:Disable
 motd: "Puppet disabled for maintenance on %s"

8.3.2. Command

The command module allows you to run arbitrary commands on a
remote host. It has one sub-command available, run.

8.3.2.1. command:run

Parameters

	cmd (type: string)
	Required: True

	Description: The command to run, as it would be typed into a shell prompt

Example

	1
2
3
4

	hosts: ['localhost']
steps:
 - command:run:
 cmd: puppet agent --test --color=false

8.3.3. Service

The service module allows you to interact with system services, as
you would with the service or systemctl commands. Only one
example is included in this section because the syntax for each of the
service module steps are nearly identical.

8.3.3.1. Example

This example demonstrates how to restart the megafrobber service
(see lines 3 and 4).

	1
2
3
4

	hosts: ['localhost']
steps:
 - service:restart:
 service: megafrobber

To use any of the other sub-commands, on line 3 in this example we
would replace service:restart with the desired subcommand. Such as
service:stop or service:reload.

8.3.3.2. service:stop

Stop a given service.

8.3.3.3. service:start

Start a given service.

8.3.3.4. service:restart

Restart a given service.

8.3.3.5. service:status

Return the status (running, stopped, etc) of a given service.

8.3.3.6. service:reload

Tell a service to reload it’s configuration files.

Note

Not all system services support all the given subcommands. This is especially true for reload.

8.3.4. Yum Cmd

8.3.4.1. yumcmd:install

Foo

8.3.4.2. yumcmd:remove

Bar

8.3.4.3. yumcmd:update

Bob

8.3.5. Nagios

The nagios module allows you to perform common tasks in Nagios related
to downtime and notifications.

8.3.5.1. nagios:ScheduleDowntime

Depending on the exact invocation, nagios:ScheduleDowntime will
schedule downtime for:

	A host

	Services on a host

	A host and it’s services

Parameters

	nagios_url (type: string)
	Description: Hostname of the nagios server

	Required: True

	Default: None

	minutes (type: int)
	Description: Number of minutes to schedule downtime for

	Required: False

	Default: 30

	service (type: string or list)
	Description: Service, or services, to schedule downtime for

	Required: False

	Default: Set downtime for the host itself (services on the host will continue to alert like normal)

	Extras: Use the string ALL to schedule downtime for the host as well as all services on the host. Use the string HOST to explicitly set downtime for just a host. HOST and ALL are case-insensitive.

	service_host (type: string)
	Description: An alternative host to schedule downtime for

	Required: False

	Default: None

	Extras: See example below for service host

Example: Schedule Downtime for a host

In this example we set downtime for a host. Because minutes is not
provided, the duration will be for the default of 30 minutes.

	1
2
3
4
5

	hosts: ['localhost']
steps:
 - nagios:ScheduleDowntime:
 nagios_url: nagios.example.com
 service: host

As stated in the parameter documentation above, we can give the string
host in any mix of upper and lower case characters.

Example: Schedule Downtime for a service

In this example we set downtime for 15 minutes (line 5) for a
specific service (megafrobber, line 6).

	1
2
3
4
5
6

	hosts: ['localhost']
steps:
 - nagios:ScheduleDowntime:
 nagios_url: nagios.example.com
 minutes: 15
 service: megafrobber

Example: Schedule Downtime for several services

Similar to the previous example, here we are setting downtime for
several services at once. Note the difference below in syntax on lines
6 → 8 compared to line 6 above. Here we provide the
services as a list to the service parameter.

	1
2
3
4
5
6
7
8

	hosts: ['localhost']
steps:
 - nagios:ScheduleDowntime:
 nagios_url: nagios.example.com
 minutes: 15
 service:
 - megafrobber
 - httpd

Example: Schedule Downtime for a host and all services on the host

In this example we will set an hour of downtime (60 minutes, line
5) for a host and all services running on that host (line 6).

	1
2
3
4
5
6

	hosts: ['localhost']
steps:
 - nagios:ScheduleDowntime:
 nagios_url: nagios.example.com
 minutes: 60
 service: ALL

Example: Using service_host to set downtime for an alternative host

In some deployments, service hosts are created in nagios to
monitor services not exactly tied to a specific host.

For example, you may be using a vendor load balancing solution, like
F5 LTM BigIPs. In a situation like this you may monitor the status of
all balancer pools so that you can send alerts if members of the pool
drop out of rotation unexpectedly.

However, while performing routine maintenance, is it expected for
hosts to be taken out of the rotation. That’s what service_host is
for. Instead of setting downtime for a specific host, we might
schedule downtime for a service representing a balancer pool on our
service host.

	1
2
3
4
5
6
7

	hosts: ['localhost']
steps:
 - nagios:ScheduleDowntime:
 nagios_url: nagios.example.com
 minutes: 60
 service_host: lb01.example.com
 service: megafrobber_pool_prod

In the above example on line 6 we tell the nagios worker that
instead of setting downtime for localhost, instead, set downtime
for lb01.example.com. Then on the following line (7) we
indicate we are setting downtime for the production megafrobber
balancer pool.

8.4. Sleep

8.4.1. sleep:Seconds

Pause all further playbook step execution for the given number of
seconds.

Parameters

	seconds (type int)
	Required: True

	Description: The number of seconds to pause for

Example

To pause a playbook for 1,337 seconds:

	1
2
3
4

	hosts: ['localhost']
steps:
 - sleep:seconds:
 seconds: 1337

Note

If more than one host is given in hosts, the playbook will pause again for each host given.

8.5. ServiceNow

8.5.1. servicenow:DoesChangeRecordExist

Checks to see if a change record exists. Resulting data will have an exists key with a bool.

Dynamic Arguments

	change_record (type str)
	Required: True

	Description: The change record to look for.

Example

To check if a change record exists:

	1
2
3
4
5

	hosts: ['localhost']
steps:
 - servicenow:DoesChangeRecordExist:
 dynamic:
 - change_record

Note

This check is ran for each host in hosts

Note

This step has no direct side-effects. It is more useful as a Pre-Deployment Step

 Copyright 2014, See AUTHORS.
 Last updated on 2014-09-16 - 15:44:51 CDT.
 Created using Sphinx 1.2.2.

 Navigation

 	
 next

 	
 previous |

 	Release Engine Guide 0.0.1 documentation

9. Appendices

This section includes all the appendices for the Release Engine Documentation

	9.1. JSON Scripts

	9.2. YAML Scripts

	9.3. Definitions

 Copyright 2014, See AUTHORS.
 Last updated on 2014-09-16 - 15:44:51 CDT.
 Created using Sphinx 1.2.2.

 Navigation

 	
 next

 	
 previous |

 	Release Engine Guide 0.0.1 documentation

 	9. Appendices

9.1. JSON Scripts

This page provides a basic overview of correct JSON
syntax. Additionally it covers non-task specific modules that are
valid in Release Engine playbooks.

See also

	Components → Pre-Built Workers

	For more information on the workers that ship with Release Engine

For the Release Engine, every JSON playbook must be a list at it’s root-most element.
Each item in the list is a dictionary. These dictionaries
represent all the options you can use to write a Release Engine playbooks.

Tip

With the exception of strings all types (arrays, booleans, integers, numbers,
nulls and objects) in a JSON list or dictionary are not required to be surrounded
by double quotes ("Foo"). If added, these types become strings. Also, all
lines in a list or dictionary must end in a comma , except the final member
in the list or dictionary, which must explicitly not end with a comma.

In JSON a list can be represented in two ways. In one way all members
of a list are lines beginning at the same indentation level surrounded by
square brackets.

[
 "Apple",
 "Orange",
 "Strawberry",
 "Mango"
]

In the second way a list is represented as comma separated elements
surrounded by square brackets. Newlines are permitted between
elements:

["apple", "orange", "strawberry", "mango"]

A dictionary is represented in a simple key: and value form:

{
 "skill": "Elite",
 "job": "Developer",
 "name": "John Eckersberg"
}

Like lists, dictionaries can be represented in an abbreviated form:

{"skill": "Elite", "job": "Developer", "name": "John Eckersberg"}

You can specify a boolean value (true/false) in several forms:

{
 "knows_oop": true,
 "likes_emacs": true,
 "uses_cvs": false
}

Finally, you can combine these data structures:

{
 "name": "John Eckersberg",
 "python": "Elite",
 "job": "Developer",
 "languages": {
 "ruby": "Elite"
 },
 "foods": [
 "Apple",
 "Orange",
 "Strawberry",
 "Mango"
],
 "dotnet": "Lame",
 "employed": true,
 "skill": "Elite"
}

That’s all you really need to know about JSON to get started writing
Release Engine playbooks.

See also

	JSONLint [http://jsonlint.com/]

	JSON Lint gets the lint out of your JSON

See also

Get Deeper into Playbooks

Now that we’re comfortable with JSON, let’s continue on and read
the Playbooks section for an in-depth guide of
playbooks.

 Copyright 2014, See AUTHORS.
 Last updated on 2014-09-16 - 15:44:51 CDT.
 Created using Sphinx 1.2.2.

 Navigation

 	
 next

 	
 previous |

 	Release Engine Guide 0.0.1 documentation

 	9. Appendices

9.2. YAML Scripts

This page provides a basic overview of correct YAML
syntax. Additionally it covers non-task specific modules that are
valid in Release Engine playbooks.

See also

	Components → Pre-Built Workers

	For more information on the workers that ship with Release Engine

For the Release Engine, every YAML playbook must be a list at it’s root-most element. Each item in the list is a dictionary. These dictionaries
represent all the options you can use to write a Release Engine playbook. In
addition, all YAML files (regardless of their association with
Release Engine or not) all YAML documents should start with ---.

In YAML a list can be represented in two ways. In one way all members
of a list are lines beginning at the same indentation level starting
with a - character

A list of tasty fruits
- Apple
- Orange
- Strawberry
- Mango

In the second way a list is represented as comma separated elements
surrounded by square brackets. Newlines are permitted between
elements

A list of tasty fruits
[apple, orange, banana, mango]

A dictionary is represented in a simple key: and value form

An employee record
name: John Eckersberg
job: Developer
skill: Elite

Like lists, dictionaries can be represented in an abbreviated form

An employee record
{name: John Eckersberg, job: Developer, skill: Elite}

You can specify a boolean value (true/false) in several forms

knows_oop: True
likes_emacs: TRUE
uses_cvs: false

Finally, you can combine these data structures

An employee record
name: John Eckersberg
job: Developer
skill: Elite
employed: True
foods:
 - Apple
 - Orange
 - Strawberry
 - Mango
languages:
 ruby: Elite
python: Elite
dotnet: Lame

That’s all you really need to know about YAML to get started writing
Release Engine playbooks.

See also

	YAMLLint [http://yamllint.com/]

	YAML Lint gets the lint out of your YAML

See also

Get Deeper into Playbooks

Now that we’re comfortable with YAML, let’s continue on and read
the Playbooks section for an in-depth guide of
playbooks.

 Copyright 2014, See AUTHORS.
 Last updated on 2014-09-16 - 15:44:51 CDT.
 Created using Sphinx 1.2.2.

 Navigation

 	
 next

 	
 previous |

 	Release Engine Guide 0.0.1 documentation

 	9. Appendices

9.3. Definitions

	AMQP

	See Message Bus.

	Finite State Machine (FSM)

	See RE-CORE

	JSON

	Javascript Object Notation. Data which can be turned into
code. Usually returned from REST APIs. It’s also called a data
interchange standard.

	Message Bus

	Very similar to how the postal service works, but in
software. Clients connect to the bus and consume or publish
messages. It’s like IPC, over the network, with queues, on
steroids.

	MongoDB

	A “schemaless” document object collection.

Basically MySQL without all the rigidly defined table structures.

	Playbook

	A document describing a software release. This document is stored
in MongoDB. Playbooks consists of three main items: ownership
identification, target hosts, and a list of steps (See also:
Playbook Step) required to finish so that the release can be
considered completed.

	Playbook Step

	A playbook step represents a unit of work in your overall release
process.

Defining a playbook step is like instantiating a Worker
Plugin. That is to say, using the api signature of a given Worker
Plugin, you fill in the missing parameters.

	Python

	The programming language the Release Engine is primarily written in.

	RE-CLIENT

	The re-client tool is how end-users primarily interact with the
release engine. The re-client tool interfaces with the
RE-REST component and provides several options for creating,
reading, updating, and deleting playbooks.

	RE-CORE

	The ring-leader of the system. Orchestrates the delegation of
playbook steps to worker plugins. Tracks the state of a
release in mongo and manupilates the completed/active/remaining job
stacks as workers update the FSM.

	RE-REST

	A REST endpoint (see below) which all clients attempting to
interact with the Release Engine must proxy their commands and
requests through. This component in integrated into the overall
authentication/authorization scheme.

Authorized requests made against the REST endpoint result in
either: messages having been sent to the RE-CORE component (for
example: begin a release for group foo), or in database
create/relad/update/delete operations.

	REST

	Representational State Transfer. Using the HTTP protocol in a
programmatic way to interact with remote systems. Usually supports
the basic CRUD operations: Creating, Reaing, Updating, and Deleting
records.

	Temporary Queue

	(See also: Message Bus) Temporary queues are created by various
Release Engine components. These queues are ephemeral and usually
automatically clean themselves up after all clients disconnect from
them. The purpose of these temporary queues is to enable direct
communication between two specific components, outside of the
pre-defined channels of communication.

	Worker (Plugin)

	Worker plugins do the actual work in a release. This could mean
several things: running puppet on a server; restarting a host;
uploading RPMs into a YUM repository, scheduling downtime, the
possibilities are virtually endless.

It might help to think of Worker Plugins as Class definitions. See
Playbook Step for the other half of that comparison.

	YAML

	YAML Ain’t Markup Language. YAML is an alternative syntax which may
be used to write Playbooks in. The normative syntax is JSON.

See also

	YAML Basics

	Introduction to YAML formatting

See also

	Playbooks

	Everything you need to know to begin writing playbooks

 Copyright 2014, See AUTHORS.
 Last updated on 2014-09-16 - 15:44:51 CDT.
 Created using Sphinx 1.2.2.

 Navigation

 	
 previous

 	Release Engine Guide 0.0.1 documentation

10. AGPLv3 License

The Release Engine uses AGPLv3+ for it’s license.

 GNU AFFERO GENERAL PUBLIC LICENSE
 Version 3, 19 November 2007

 Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/>
 Everyone is permitted to copy and distribute verbatim copies
 of this license document, but changing it is not allowed.

 Preamble

 The GNU Affero General Public License is a free, copyleft license for
software and other kinds of works, specifically designed to ensure
cooperation with the community in the case of network server software.

 The licenses for most software and other practical works are designed
to take away your freedom to share and change the works. By contrast,
our General Public Licenses are intended to guarantee your freedom to
share and change all versions of a program--to make sure it remains free
software for all its users.

 When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
them if you wish), that you receive source code or can get it if you
want it, that you can change the software or use pieces of it in new
free programs, and that you know you can do these things.

 Developers that use our General Public Licenses protect your rights
with two steps: (1) assert copyright on the software, and (2) offer
you this License which gives you legal permission to copy, distribute
and/or modify the software.

 A secondary benefit of defending all users' freedom is that
improvements made in alternate versions of the program, if they
receive widespread use, become available for other developers to
incorporate. Many developers of free software are heartened and
encouraged by the resulting cooperation. However, in the case of
software used on network servers, this result may fail to come about.
The GNU General Public License permits making a modified version and
letting the public access it on a server without ever releasing its
source code to the public.

 The GNU Affero General Public License is designed specifically to
ensure that, in such cases, the modified source code becomes available
to the community. It requires the operator of a network server to
provide the source code of the modified version running there to the
users of that server. Therefore, public use of a modified version, on
a publicly accessible server, gives the public access to the source
code of the modified version.

 An older license, called the Affero General Public License and
published by Affero, was designed to accomplish similar goals. This is
a different license, not a version of the Affero GPL, but Affero has
released a new version of the Affero GPL which permits relicensing under
this license.

 The precise terms and conditions for copying, distribution and
modification follow.

 TERMS AND CONDITIONS

 0. Definitions.

 "This License" refers to version 3 of the GNU Affero General Public License.

 "Copyright" also means copyright-like laws that apply to other kinds of
works, such as semiconductor masks.

 "The Program" refers to any copyrightable work licensed under this
License. Each licensee is addressed as "you". "Licensees" and
"recipients" may be individuals or organizations.

 To "modify" a work means to copy from or adapt all or part of the work
in a fashion requiring copyright permission, other than the making of an
exact copy. The resulting work is called a "modified version" of the
earlier work or a work "based on" the earlier work.

 A "covered work" means either the unmodified Program or a work based
on the Program.

 To "propagate" a work means to do anything with it that, without
permission, would make you directly or secondarily liable for
infringement under applicable copyright law, except executing it on a
computer or modifying a private copy. Propagation includes copying,
distribution (with or without modification), making available to the
public, and in some countries other activities as well.

 To "convey" a work means any kind of propagation that enables other
parties to make or receive copies. Mere interaction with a user through
a computer network, with no transfer of a copy, is not conveying.

 An interactive user interface displays "Appropriate Legal Notices"
to the extent that it includes a convenient and prominently visible
feature that (1) displays an appropriate copyright notice, and (2)
tells the user that there is no warranty for the work (except to the
extent that warranties are provided), that licensees may convey the
work under this License, and how to view a copy of this License. If
the interface presents a list of user commands or options, such as a
menu, a prominent item in the list meets this criterion.

 1. Source Code.

 The "source code" for a work means the preferred form of the work
for making modifications to it. "Object code" means any non-source
form of a work.

 A "Standard Interface" means an interface that either is an official
standard defined by a recognized standards body, or, in the case of
interfaces specified for a particular programming language, one that
is widely used among developers working in that language.

 The "System Libraries" of an executable work include anything, other
than the work as a whole, that (a) is included in the normal form of
packaging a Major Component, but which is not part of that Major
Component, and (b) serves only to enable use of the work with that
Major Component, or to implement a Standard Interface for which an
implementation is available to the public in source code form. A
"Major Component", in this context, means a major essential component
(kernel, window system, and so on) of the specific operating system
(if any) on which the executable work runs, or a compiler used to
produce the work, or an object code interpreter used to run it.

 The "Corresponding Source" for a work in object code form means all
the source code needed to generate, install, and (for an executable
work) run the object code and to modify the work, including scripts to
control those activities. However, it does not include the work's
System Libraries, or general-purpose tools or generally available free
programs which are used unmodified in performing those activities but
which are not part of the work. For example, Corresponding Source
includes interface definition files associated with source files for
the work, and the source code for shared libraries and dynamically
linked subprograms that the work is specifically designed to require,
such as by intimate data communication or control flow between those
subprograms and other parts of the work.

 The Corresponding Source need not include anything that users
can regenerate automatically from other parts of the Corresponding
Source.

 The Corresponding Source for a work in source code form is that
same work.

 2. Basic Permissions.

 All rights granted under this License are granted for the term of
copyright on the Program, and are irrevocable provided the stated
conditions are met. This License explicitly affirms your unlimited
permission to run the unmodified Program. The output from running a
covered work is covered by this License only if the output, given its
content, constitutes a covered work. This License acknowledges your
rights of fair use or other equivalent, as provided by copyright law.

 You may make, run and propagate covered works that you do not
convey, without conditions so long as your license otherwise remains
in force. You may convey covered works to others for the sole purpose
of having them make modifications exclusively for you, or provide you
with facilities for running those works, provided that you comply with
the terms of this License in conveying all material for which you do
not control copyright. Those thus making or running the covered works
for you must do so exclusively on your behalf, under your direction
and control, on terms that prohibit them from making any copies of
your copyrighted material outside their relationship with you.

 Conveying under any other circumstances is permitted solely under
the conditions stated below. Sublicensing is not allowed; section 10
makes it unnecessary.

 3. Protecting Users' Legal Rights From Anti-Circumvention Law.

 No covered work shall be deemed part of an effective technological
measure under any applicable law fulfilling obligations under article
11 of the WIPO copyright treaty adopted on 20 December 1996, or
similar laws prohibiting or restricting circumvention of such
measures.

 When you convey a covered work, you waive any legal power to forbid
circumvention of technological measures to the extent such circumvention
is effected by exercising rights under this License with respect to
the covered work, and you disclaim any intention to limit operation or
modification of the work as a means of enforcing, against the work's
users, your or third parties' legal rights to forbid circumvention of
technological measures.

 4. Conveying Verbatim Copies.

 You may convey verbatim copies of the Program's source code as you
receive it, in any medium, provided that you conspicuously and
appropriately publish on each copy an appropriate copyright notice;
keep intact all notices stating that this License and any
non-permissive terms added in accord with section 7 apply to the code;
keep intact all notices of the absence of any warranty; and give all
recipients a copy of this License along with the Program.

 You may charge any price or no price for each copy that you convey,
and you may offer support or warranty protection for a fee.

 5. Conveying Modified Source Versions.

 You may convey a work based on the Program, or the modifications to
produce it from the Program, in the form of source code under the
terms of section 4, provided that you also meet all of these conditions:

 a) The work must carry prominent notices stating that you modified
 it, and giving a relevant date.

 b) The work must carry prominent notices stating that it is
 released under this License and any conditions added under section
 7. This requirement modifies the requirement in section 4 to
 "keep intact all notices".

 c) You must license the entire work, as a whole, under this
 License to anyone who comes into possession of a copy. This
 License will therefore apply, along with any applicable section 7
 additional terms, to the whole of the work, and all its parts,
 regardless of how they are packaged. This License gives no
 permission to license the work in any other way, but it does not
 invalidate such permission if you have separately received it.

 d) If the work has interactive user interfaces, each must display
 Appropriate Legal Notices; however, if the Program has interactive
 interfaces that do not display Appropriate Legal Notices, your
 work need not make them do so.

 A compilation of a covered work with other separate and independent
works, which are not by their nature extensions of the covered work,
and which are not combined with it such as to form a larger program,
in or on a volume of a storage or distribution medium, is called an
"aggregate" if the compilation and its resulting copyright are not
used to limit the access or legal rights of the compilation's users
beyond what the individual works permit. Inclusion of a covered work
in an aggregate does not cause this License to apply to the other
parts of the aggregate.

 6. Conveying Non-Source Forms.

 You may convey a covered work in object code form under the terms
of sections 4 and 5, provided that you also convey the
machine-readable Corresponding Source under the terms of this License,
in one of these ways:

 a) Convey the object code in, or embodied in, a physical product
 (including a physical distribution medium), accompanied by the
 Corresponding Source fixed on a durable physical medium
 customarily used for software interchange.

 b) Convey the object code in, or embodied in, a physical product
 (including a physical distribution medium), accompanied by a
 written offer, valid for at least three years and valid for as
 long as you offer spare parts or customer support for that product
 model, to give anyone who possesses the object code either (1) a
 copy of the Corresponding Source for all the software in the
 product that is covered by this License, on a durable physical
 medium customarily used for software interchange, for a price no
 more than your reasonable cost of physically performing this
 conveying of source, or (2) access to copy the
 Corresponding Source from a network server at no charge.

 c) Convey individual copies of the object code with a copy of the
 written offer to provide the Corresponding Source. This
 alternative is allowed only occasionally and noncommercially, and
 only if you received the object code with such an offer, in accord
 with subsection 6b.

 d) Convey the object code by offering access from a designated
 place (gratis or for a charge), and offer equivalent access to the
 Corresponding Source in the same way through the same place at no
 further charge. You need not require recipients to copy the
 Corresponding Source along with the object code. If the place to
 copy the object code is a network server, the Corresponding Source
 may be on a different server (operated by you or a third party)
 that supports equivalent copying facilities, provided you maintain
 clear directions next to the object code saying where to find the
 Corresponding Source. Regardless of what server hosts the
 Corresponding Source, you remain obligated to ensure that it is
 available for as long as needed to satisfy these requirements.

 e) Convey the object code using peer-to-peer transmission, provided
 you inform other peers where the object code and Corresponding
 Source of the work are being offered to the general public at no
 charge under subsection 6d.

 A separable portion of the object code, whose source code is excluded
from the Corresponding Source as a System Library, need not be
included in conveying the object code work.

 A "User Product" is either (1) a "consumer product", which means any
tangible personal property which is normally used for personal, family,
or household purposes, or (2) anything designed or sold for incorporation
into a dwelling. In determining whether a product is a consumer product,
doubtful cases shall be resolved in favor of coverage. For a particular
product received by a particular user, "normally used" refers to a
typical or common use of that class of product, regardless of the status
of the particular user or of the way in which the particular user
actually uses, or expects or is expected to use, the product. A product
is a consumer product regardless of whether the product has substantial
commercial, industrial or non-consumer uses, unless such uses represent
the only significant mode of use of the product.

 "Installation Information" for a User Product means any methods,
procedures, authorization keys, or other information required to install
and execute modified versions of a covered work in that User Product from
a modified version of its Corresponding Source. The information must
suffice to ensure that the continued functioning of the modified object
code is in no case prevented or interfered with solely because
modification has been made.

 If you convey an object code work under this section in, or with, or
specifically for use in, a User Product, and the conveying occurs as
part of a transaction in which the right of possession and use of the
User Product is transferred to the recipient in perpetuity or for a
fixed term (regardless of how the transaction is characterized), the
Corresponding Source conveyed under this section must be accompanied
by the Installation Information. But this requirement does not apply
if neither you nor any third party retains the ability to install
modified object code on the User Product (for example, the work has
been installed in ROM).

 The requirement to provide Installation Information does not include a
requirement to continue to provide support service, warranty, or updates
for a work that has been modified or installed by the recipient, or for
the User Product in which it has been modified or installed. Access to a
network may be denied when the modification itself materially and
adversely affects the operation of the network or violates the rules and
protocols for communication across the network.

 Corresponding Source conveyed, and Installation Information provided,
in accord with this section must be in a format that is publicly
documented (and with an implementation available to the public in
source code form), and must require no special password or key for
unpacking, reading or copying.

 7. Additional Terms.

 "Additional permissions" are terms that supplement the terms of this
License by making exceptions from one or more of its conditions.
Additional permissions that are applicable to the entire Program shall
be treated as though they were included in this License, to the extent
that they are valid under applicable law. If additional permissions
apply only to part of the Program, that part may be used separately
under those permissions, but the entire Program remains governed by
this License without regard to the additional permissions.

 When you convey a copy of a covered work, you may at your option
remove any additional permissions from that copy, or from any part of
it. (Additional permissions may be written to require their own
removal in certain cases when you modify the work.) You may place
additional permissions on material, added by you to a covered work,
for which you have or can give appropriate copyright permission.

 Notwithstanding any other provision of this License, for material you
add to a covered work, you may (if authorized by the copyright holders of
that material) supplement the terms of this License with terms:

 a) Disclaiming warranty or limiting liability differently from the
 terms of sections 15 and 16 of this License; or

 b) Requiring preservation of specified reasonable legal notices or
 author attributions in that material or in the Appropriate Legal
 Notices displayed by works containing it; or

 c) Prohibiting misrepresentation of the origin of that material, or
 requiring that modified versions of such material be marked in
 reasonable ways as different from the original version; or

 d) Limiting the use for publicity purposes of names of licensors or
 authors of the material; or

 e) Declining to grant rights under trademark law for use of some
 trade names, trademarks, or service marks; or

 f) Requiring indemnification of licensors and authors of that
 material by anyone who conveys the material (or modified versions of
 it) with contractual assumptions of liability to the recipient, for
 any liability that these contractual assumptions directly impose on
 those licensors and authors.

 All other non-permissive additional terms are considered "further
restrictions" within the meaning of section 10. If the Program as you
received it, or any part of it, contains a notice stating that it is
governed by this License along with a term that is a further
restriction, you may remove that term. If a license document contains
a further restriction but permits relicensing or conveying under this
License, you may add to a covered work material governed by the terms
of that license document, provided that the further restriction does
not survive such relicensing or conveying.

 If you add terms to a covered work in accord with this section, you
must place, in the relevant source files, a statement of the
additional terms that apply to those files, or a notice indicating
where to find the applicable terms.

 Additional terms, permissive or non-permissive, may be stated in the
form of a separately written license, or stated as exceptions;
the above requirements apply either way.

 8. Termination.

 You may not propagate or modify a covered work except as expressly
provided under this License. Any attempt otherwise to propagate or
modify it is void, and will automatically terminate your rights under
this License (including any patent licenses granted under the third
paragraph of section 11).

 However, if you cease all violation of this License, then your
license from a particular copyright holder is reinstated (a)
provisionally, unless and until the copyright holder explicitly and
finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means
prior to 60 days after the cessation.

 Moreover, your license from a particular copyright holder is
reinstated permanently if the copyright holder notifies you of the
violation by some reasonable means, this is the first time you have
received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after
your receipt of the notice.

 Termination of your rights under this section does not terminate the
licenses of parties who have received copies or rights from you under
this License. If your rights have been terminated and not permanently
reinstated, you do not qualify to receive new licenses for the same
material under section 10.

 9. Acceptance Not Required for Having Copies.

 You are not required to accept this License in order to receive or
run a copy of the Program. Ancillary propagation of a covered work
occurring solely as a consequence of using peer-to-peer transmission
to receive a copy likewise does not require acceptance. However,
nothing other than this License grants you permission to propagate or
modify any covered work. These actions infringe copyright if you do
not accept this License. Therefore, by modifying or propagating a
covered work, you indicate your acceptance of this License to do so.

 10. Automatic Licensing of Downstream Recipients.

 Each time you convey a covered work, the recipient automatically
receives a license from the original licensors, to run, modify and
propagate that work, subject to this License. You are not responsible
for enforcing compliance by third parties with this License.

 An "entity transaction" is a transaction transferring control of an
organization, or substantially all assets of one, or subdividing an
organization, or merging organizations. If propagation of a covered
work results from an entity transaction, each party to that
transaction who receives a copy of the work also receives whatever
licenses to the work the party's predecessor in interest had or could
give under the previous paragraph, plus a right to possession of the
Corresponding Source of the work from the predecessor in interest, if
the predecessor has it or can get it with reasonable efforts.

 You may not impose any further restrictions on the exercise of the
rights granted or affirmed under this License. For example, you may
not impose a license fee, royalty, or other charge for exercise of
rights granted under this License, and you may not initiate litigation
(including a cross-claim or counterclaim in a lawsuit) alleging that
any patent claim is infringed by making, using, selling, offering for
sale, or importing the Program or any portion of it.

 11. Patents.

 A "contributor" is a copyright holder who authorizes use under this
License of the Program or a work on which the Program is based. The
work thus licensed is called the contributor's "contributor version".

 A contributor's "essential patent claims" are all patent claims
owned or controlled by the contributor, whether already acquired or
hereafter acquired, that would be infringed by some manner, permitted
by this License, of making, using, or selling its contributor version,
but do not include claims that would be infringed only as a
consequence of further modification of the contributor version. For
purposes of this definition, "control" includes the right to grant
patent sublicenses in a manner consistent with the requirements of
this License.

 Each contributor grants you a non-exclusive, worldwide, royalty-free
patent license under the contributor's essential patent claims, to
make, use, sell, offer for sale, import and otherwise run, modify and
propagate the contents of its contributor version.

 In the following three paragraphs, a "patent license" is any express
agreement or commitment, however denominated, not to enforce a patent
(such as an express permission to practice a patent or covenant not to
sue for patent infringement). To "grant" such a patent license to a
party means to make such an agreement or commitment not to enforce a
patent against the party.

 If you convey a covered work, knowingly relying on a patent license,
and the Corresponding Source of the work is not available for anyone
to copy, free of charge and under the terms of this License, through a
publicly available network server or other readily accessible means,
then you must either (1) cause the Corresponding Source to be so
available, or (2) arrange to deprive yourself of the benefit of the
patent license for this particular work, or (3) arrange, in a manner
consistent with the requirements of this License, to extend the patent
license to downstream recipients. "Knowingly relying" means you have
actual knowledge that, but for the patent license, your conveying the
covered work in a country, or your recipient's use of the covered work
in a country, would infringe one or more identifiable patents in that
country that you have reason to believe are valid.

 If, pursuant to or in connection with a single transaction or
arrangement, you convey, or propagate by procuring conveyance of, a
covered work, and grant a patent license to some of the parties
receiving the covered work authorizing them to use, propagate, modify
or convey a specific copy of the covered work, then the patent license
you grant is automatically extended to all recipients of the covered
work and works based on it.

 A patent license is "discriminatory" if it does not include within
the scope of its coverage, prohibits the exercise of, or is
conditioned on the non-exercise of one or more of the rights that are
specifically granted under this License. You may not convey a covered
work if you are a party to an arrangement with a third party that is
in the business of distributing software, under which you make payment
to the third party based on the extent of your activity of conveying
the work, and under which the third party grants, to any of the
parties who would receive the covered work from you, a discriminatory
patent license (a) in connection with copies of the covered work
conveyed by you (or copies made from those copies), or (b) primarily
for and in connection with specific products or compilations that
contain the covered work, unless you entered into that arrangement,
or that patent license was granted, prior to 28 March 2007.

 Nothing in this License shall be construed as excluding or limiting
any implied license or other defenses to infringement that may
otherwise be available to you under applicable patent law.

 12. No Surrender of Others' Freedom.

 If conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot convey a
covered work so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you may
not convey it at all. For example, if you agree to terms that obligate you
to collect a royalty for further conveying from those to whom you convey
the Program, the only way you could satisfy both those terms and this
License would be to refrain entirely from conveying the Program.

 13. Remote Network Interaction; Use with the GNU General Public License.

 Notwithstanding any other provision of this License, if you modify the
Program, your modified version must prominently offer all users
interacting with it remotely through a computer network (if your version
supports such interaction) an opportunity to receive the Corresponding
Source of your version by providing access to the Corresponding Source
from a network server at no charge, through some standard or customary
means of facilitating copying of software. This Corresponding Source
shall include the Corresponding Source for any work covered by version 3
of the GNU General Public License that is incorporated pursuant to the
following paragraph.

 Notwithstanding any other provision of this License, you have
permission to link or combine any covered work with a work licensed
under version 3 of the GNU General Public License into a single
combined work, and to convey the resulting work. The terms of this
License will continue to apply to the part which is the covered work,
but the work with which it is combined will remain governed by version
3 of the GNU General Public License.

 14. Revised Versions of this License.

 The Free Software Foundation may publish revised and/or new versions of
the GNU Affero General Public License from time to time. Such new versions
will be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.

 Each version is given a distinguishing version number. If the
Program specifies that a certain numbered version of the GNU Affero General
Public License "or any later version" applies to it, you have the
option of following the terms and conditions either of that numbered
version or of any later version published by the Free Software
Foundation. If the Program does not specify a version number of the
GNU Affero General Public License, you may choose any version ever published
by the Free Software Foundation.

 If the Program specifies that a proxy can decide which future
versions of the GNU Affero General Public License can be used, that proxy's
public statement of acceptance of a version permanently authorizes you
to choose that version for the Program.

 Later license versions may give you additional or different
permissions. However, no additional obligations are imposed on any
author or copyright holder as a result of your choosing to follow a
later version.

 15. Disclaimer of Warranty.

 THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

 16. Limitation of Liability.

 IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

 17. Interpretation of Sections 15 and 16.

 If the disclaimer of warranty and limitation of liability provided
above cannot be given local legal effect according to their terms,
reviewing courts shall apply local law that most closely approximates
an absolute waiver of all civil liability in connection with the
Program, unless a warranty or assumption of liability accompanies a
copy of the Program in return for a fee.

 END OF TERMS AND CONDITIONS

 How to Apply These Terms to Your New Programs

 If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make it
free software which everyone can redistribute and change under these terms.

 To do so, attach the following notices to the program. It is safest
to attach them to the start of each source file to most effectively
state the exclusion of warranty; and each file should have at least
the "copyright" line and a pointer to where the full notice is found.

 <one line to give the program's name and a brief idea of what it does.>
 Copyright (C) <year> <name of author>

 This program is free software: you can redistribute it and/or modify
 it under the terms of the GNU Affero General Public License as published by
 the Free Software Foundation, either version 3 of the License, or
 (at your option) any later version.

 This program is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 GNU Affero General Public License for more details.

 You should have received a copy of the GNU Affero General Public License
 along with this program. If not, see <http://www.gnu.org/licenses/>.

Also add information on how to contact you by electronic and paper mail.

 If your software can interact with users remotely through a computer
network, you should also make sure that it provides a way for users to
get its source. For example, if your program is a web application, its
interface could display a "Source" link that leads users to an archive
of the code. There are many ways you could offer source, and different
solutions will be better for different programs; see section 13 for the
specific requirements.

 You should also get your employer (if you work as a programmer) or school,
if any, to sign a "copyright disclaimer" for the program, if necessary.
For more information on this, and how to apply and follow the GNU AGPL, see
<http://www.gnu.org/licenses/>.

 Copyright 2014, See AUTHORS.
 Last updated on 2014-09-16 - 15:44:51 CDT.
 Created using Sphinx 1.2.2.

 _static/release-engine.png
—»nmZ=x

BUS
State Wl WZ W3
Machine W4 W5 Wn

BUS

DB

Logger

_static/minus.png

_static/comment.png

_static/comment-bright.png

_images/graphviz-ae1874317729c5b7213801a98046357125b59c00.png
re-worker

listen to channel IJSON formatted

for new job parameters job parameters

‘Via message bus

»

receive parameters

ACK parameters

[Parse parameters

parameters
parsed OK?

OT OK

needful
successful?

zsend ‘completed' message to FSM Isend ‘failed' message to FSM

_static/file.png

_images/ComponentDiagram.png
Release Engine

Component Interactions

;

Core Release Engine Components

FSM] |FSM) |FSM,
j

~

.
a L]

s Message Bus

Auth Source

i

O
Supporting
\Infrastructure

- v

Worker Coalitions

_static/plus.png

_static/ajax-loader.gif

_static/down.png

search.html

 Navigation

 		Release Engine Guide 0.0.1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2014, See AUTHORS.
 Last updated on 2014-09-16 - 15:44:51 CDT.
 Created using Sphinx 1.2.2.

_static/comment-close.png

_static/up.png

_static/up-pressed.png

_static/down-pressed.png

